Skip to main content
eScholarship
Open Access Publications from the University of California

The NOD/RIP2 Pathway Is Essential for Host Defenses Against Chlamydophila pneumoniae Lung Infection

  • Author(s): Shimada, Kenichi
  • Chen, Shuang
  • Dempsey, Paul W.
  • Sorrentino, Rosalinda
  • Alsabeh, Randa
  • Slepenkin, Anatoly V.
  • Peterson, Ellena
  • Doherty, Terence M.
  • Underhill, David
  • Crother, Timothy R.
  • Arditi, Moshe
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

Here we investigated the role of the Nod/Rip2 pathway in host responses to Chlamydophila pneumoniae–induced pneumonia in mice. Rip2−/− mice infected with C. pneumoniae exhibited impaired iNOS expression and NO production, and delayed neutrophil recruitment to the lungs. Levels of IL-6 and IFN-γ levels as well as KC and MIP-2 levels in bronchoalveolar lavage fluid (BALF) were significantly decreased in Rip2−/− mice compared to wild-type (WT) mice at day 3. Rip2−/− mice showed significant delay in bacterial clearance from the lungs and developed more severe and chronic lung inflammation that continued even on day 35 and led to increased mortality, whereas WT mice cleared the bacterial load, recovered from acute pneumonia, and survived. Both Nod1−/− and Nod2−/− mice also showed delayed bacterial clearance, suggesting that C. pneumoniae is recognized by both of these intracellular receptors. Bone marrow chimera experiments demonstrated that Rip2 in BM-derived cells rather than non-hematopoietic stromal cells played a key role in host responses in the lungs and clearance of C. pneumoniae. Furthermore, adoptive transfer of WT macrophages intratracheally was able to rescue the bacterial clearance defect in Rip2−/− mice. These results demonstrate that in addition to the TLR/MyD88 pathway, the Nod/Rip2 signaling pathway also plays a significant role in intracellular recognition, innate immune host responses, and ultimately has a decisive impact on clearance of C. pneumoniae from the lungs and survival of the infectious challenge.Author SummaryChlamydophila pneumoniae (C. pneumoniae) is a common intracellular parasite that causes lung infections and contributes to several diseases characterized by chronic inflammation. Toll-like receptors expressed on the cell surface detect C. pneumoniae and mount a vigorous defense, but it is not known how the cell defends itself once the pathogen has taken up residence as a parasite. We reasoned that cytosolic pattern recognition receptors called Nods (nucleotide oligomerization domain) that detect microbes that gain entry into the cell might be involved. Using mice genetically deficient in Nod1 and Nod2 or their common downstream adaptor (Rip2), we show that in lung infection, Nod proteins are indeed essential in directing a defense against C. pneumoniae. Mice with defective Nod/Rip2-dependent signaling exhibited delayed recruitment of neutrophils, blunted production of pro-inflammatory cytokines and chemokines, and evidence of defective iNOS expression and NO production. These impaired responses led to delayed clearance of bacteria, intense persistent lung inflammation, and increased mortality. By performing bone marrow transplantation experiments and direct transfer of cells into the lungs of mice, we demonstrated that intact Nod-dependent signaling in bone marrow–derived cells was critical in the defense against C. pneumoniae. Our results indicate that Nod proteins also play an important role in host defense against C. pneumoniae. Coordinated and sequential activation of TLR and Nod signaling pathways may be necessary for an efficient immune response and host defense against C. pneumoniae.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View