Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Phagocytosis of the legionnaires' disease bacterium (legionella pneumophila) occurs by a novel mechanism: Engulfment within a Pseudopod coil

Published Web Location

https://www.sciencedirect.com/science/article/pii/0092867484900709?via%3Dihub
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Phagocytosis of Legionella pneumophila, a bacterial pathogen that multiplies intracellularly in human mononuclear phagocytes and causes Legionnaires' disease, occurs by a novel mechanism. A phagocyte pseudopod coils around the bacterium as the organism is internalized. Human monocytes, alveolar macrophages, and polymorphonuclear leukocytes all phagocytize L. pneumophila by this unusual process, termed "coiling phagocytosis," and these leukocytes phagocytize not only live L. pneumophila in this way, but also formalin-killed, glutaraldehyde-killed, and heat-killed L. pneumophila. In contrast, under the same experimental conditions, monocytes phagocytize Streptococcus pneumoniae, encapsulated and unencapsulated E. coli, Pseudomonas aeruginosa, Pseudomonas alcaligenes, Neisseria gonorrhoeae, and Neisseria meningitidis by conventional phagocytosis. Treatment of L. pneumophila with high-titer anti-L. pneumophila antibody abolishes coiling phagocytosis; such bacteria are internalized by conventional phagocytosis. These experiments raise the possibility that a surface component of L. pneumophila mediates the unusual response by the phagocyte. Such a component, if elaborated in vivo, might be responsible for extrapulmonary manifestations of Legionnaires' disease suspected of being toxin-mediated.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item