Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Tuning the Hydrophilic–Hydrophobic Balance of Molecular Polymer Bottlebrushes Enhances their Tumor Homing Properties

Abstract

Nanoparticle (NP)-based drug delivery systems are promising in anticancer therapy, capable of delivering cargo with superior selectivity and achieving enhanced tumor accumulation compared to small-molecule therapeutics. As more efforts are being devoted to NP development, molecular polymer bottlebrushes (MPBs) have gained attention as a potential drug delivery vehicle. To date, the influence of various MPB parameters such as size, shape, and surface charge in determining tumor penetrability have been systematically probed. However, the role of amphiphilicity, specifically the hydrophilic-hydrophobic balance, remains unexplored. In this study, a series of MPBs are employed with varied hydrophobicity levels to reveal a dependence between MPB composition, cell association, and tumor homing. The data indicates that increasing levels of hydrophobicity in MPBs (to a certain level) demonstrate only marginal effects in vitro but reveals enhanced tumor homing in a mouse model of ovarian cancer in vivo, where more hydrophilic MPBs exhibit low tissue deposition and low tumor homing. In contrast, more hydrophobic MPBs show significant tumor accumulation and homing due to their engineered hydrophobicity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View