Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations

  • Author(s): Zheng, Baolong
  • Lin, Yaojun
  • Zhou, Yizhang
  • Lavernia, Enrique J.
  • et al.
Abstract

In this article, the thermal history and cooling rate experienced by gas-atomized Al-based amorphous powders were studied via numerical simulations. Modeling simulations were based on the assumption of Newtonian cooling with forced convection, as well as an energy balance, which involves gas dynamics, droplet dynamics, and heat transfer between gas and droplet. To render the problem tractable, phase transformations, crystal nucleation, and growth were not taken into account in the analysis of the solidification of Al droplets; instead, an energy balance approach was formulated and used. The numerical results and associated analysis were used to optimize processing parameters during gas atomization of Al-based amorphous powder. The results showed that the cooling rate of droplets increases with decreasing powder size and can reach in excess of 105 K/s for powder <20 μm in diameter. Gas composition has a more significant influence on cooling rate than gas pressure, and 100 pct He has the highest cooling effect. The results also showed that the cooling rate increases with increasing melt superheat temperature.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View