Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance.

  • Author(s): Witschey, Walter RT
  • Zsido, Gerald A
  • Koomalsingh, Kevin
  • Kondo, Norihiro
  • Minakawa, Masahito
  • Shuto, Takashi
  • McGarvey, Jeremy R
  • Levack, Melissa M
  • Contijoch, Francisco
  • Pilla, James J
  • Gorman, Joseph H
  • Gorman, Robert C
  • et al.
Abstract

Background

Late gadolinium enhanced (LGE) cardiovascular magnetic resonance (CMR) is frequently used to evaluate myocardial viability, estimate total infarct size and transmurality, but is not always straightforward is and contraindicated in patients with renal failure because of the risk of nephrogenic systemic fibrosis. T2- and T1-weighted CMR alone is however relatively insensitive to chronic myocardial infarction (MI) in the absence of a contrast agent. The objective of this manuscript is to explore T1ρ-weighted rotating frame CMR techniques for infarct characterization without contrast agents. We hypothesize that T1ρ CMR accurately measures infarct size in chronic MI on account of a large change in T1ρ relaxation time between scar and myocardium.

Methods

7Yorkshire swine underwent CMR at 8 weeks post-surgical induction of apical or posterolateral myocardial infarction. Late gadolinium enhanced and T1ρ CMR were performed at high resolution to visualize MI. T1ρ-weighted imaging was performed with a B₁  = 500 Hz spin lock pulse on a 3 T clinical MR scanner. Following sacrifice, the heart was excised and infarct size was calculated by optical planimetry. Infarct size was calculated for all three methods (LGE, T1ρ and planimetry) and statistical analysis was performed. T1ρ relaxation time maps were computed from multiple T1ρ-weighted images at varying spin lock duration.

Results

Mean infarct contrast-to-noise ratio (CNR) in LGE and T1ρ CMR was 2.8 ± 0.1 and 2.7 ± 0.1. The variation in signal intensity of tissues was found to be, in order of decreasing signal intensity, LV blood, fat and edema, infarct and healthy myocardium. Infarct size measured by T1ρ CMR (21.1% ± 1.4%) was not significantly different from LGE CMR (22.2% ± 1.5%) or planimetry (21.1% ± 2.7%; p < 0.05).T1ρ relaxation times were T1ρinfarct = 91.7 ms in the infarct and T1ρremote = 47.2 ms in the remote myocardium.

Conclusions

T1ρ-weighted imaging using long spin locking pulses enables high discrimination between infarct and myocardium. T1ρ CMR may be useful to visualizing MI without the need for exogenous contrast agents for a wide range of clinical cardiac applications such as to distinguish edema and scar tissue and tissue characterization of myocarditis and ventricular fibrosis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View