Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

The Ubiquitin Proteome of Toxoplasma gondii Reveals Roles for Protein Ubiquitination in Cell-Cycle Transitions.

Abstract

Protein ubiquitination plays key roles in protein turnover, cellular signaling, and intracellular transport. The genome of Toxoplasma gondii encodes ubiquitination machinery, but the roles of this posttranslational modification (PTM) are unknown. To examine the prevalence and function of ubiquitination in T. gondii, we mapped the ubiquitin proteome of tachyzoites. Over 500 ubiquitin-modified proteins, with almost 1,000 sites, were identified on proteins with diverse localizations and functions. Enrichment analysis demonstrated that 35% of ubiquitinated proteins are cell-cycle regulated. Unexpectedly, most classic cell-cycle regulators conserved in T. gondii were not detected in the ubiquitinome. Furthermore, many ubiquitinated proteins localize to the cytoskeleton and inner membrane complex, a structure beneath the plasma membrane facilitating division and host invasion. Comparing the ubiquitinome with other PTM proteomes reveals waves of PTM enrichment during the cell cycle. Thus, T. gondii PTMs are implicated as critical regulators of cell division and cell-cycle transitions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View