Skip to main content
Download PDF
- Main
Human Birth Weight and Reproductive Immunology: Testing for Interactions between Maternal and Offspring KIR and HLA-C Genes
Published Web Location
https://doi.org/10.1159/000456033Abstract
Background/aims
Maternal and offspring cell contact at the site of placentation presents a plausible setting for maternal-fetal genotype (MFG) interactions affecting fetal growth. We test hypotheses regarding killer cell immunoglobulin-like receptor (KIR) and HLA-C MFG effects on human birth weight by extending the quantitative MFG (QMFG) test.Methods
Until recently, association testing for MFG interactions had limited applications. To improve the ability to test for these interactions, we developed the extended QMFG test, a linear mixed-effect model that can use multi-locus genotype data from families.Results
We demonstrate the extended QMFG test's statistical properties. We also show that if an offspring-only model is fit when MFG effects exist, associations can be missed or misattributed. Furthermore, imprecisely modeling the effects of both KIR and HLA-C could result in a failure to replicate if these loci's allele frequencies differ among populations. To further illustrate the extended QMFG test's advantages, we apply the extended QMFG test to a UK cohort study and the Norwegian Mother and Child Cohort (MoBa) study.Conclusion
We find a significant KIR-HLA-C interaction effect on birth weight. More generally, the QMFG test can detect genetic associations that may be missed by standard genome-wide association studies for quantitative traits.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%