Spin state and moment of inertia of Venus
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Spin state and moment of inertia of Venus

Published Web Location

http://arxiv.org/abs/2103.01504
No data is associated with this publication.
Abstract

Fundamental properties of the planet Venus, such as its internal mass distribution and variations in length of day, have remained unknown. We used Earth-based observations of radar speckles tied to the rotation of Venus obtained in 2006-2020 to measure its spin axis orientation, spin precession rate, moment of inertia, and length-of-day variations. Venus is tilted by 2.6392 $\pm$ 0.0008 degrees ($1\sigma$) with respect to its orbital plane. The spin axis precesses at a rate of 44.58 $\pm$ 3.3 arcseconds per year ($1\sigma$), which gives a normalized moment of inertia of 0.337 $\pm$ 0.024 and yields a rough estimate of the size of the core. The average sidereal day on Venus in the 2006-2020 interval is 243.0226 $\pm$ 0.0013 Earth days ($1\sigma$). The spin period of the solid planet exhibits variations of 61 ppm ($\sim$20 minutes) with a possible diurnal or semidiurnal forcing. The length-of-day variations imply that changes in atmospheric angular momentum of at least $\sim$4% are transferred to the solid planet.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item