Skip to main content
Download PDF
- Main
Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose
Published Web Location
https://doi.org/10.1186/s13068-020-1649-7Abstract
Background
Molecular-scale mechanisms of the enzymatic breakdown of cellulosic biomass into fermentable sugars are still poorly understood, with a need for independent measurements of enzyme kinetic parameters. We measured binding times of cellobiohydrolase Trichoderma reesei Cel7A (Cel7A) on celluloses using wild-type Cel7A (WTintact), the catalytically deficient mutant Cel7A E212Q (E212Qintact) and their proteolytically isolated catalytic domains (CD) (WTcore and E212Qcore, respectively). The binding time distributions were obtained from time-resolved, super-resolution images of fluorescently labeled enzymes on cellulose obtained with total internal reflection fluorescence microscopy.Results
Binding of WTintact and E212Qintact on the recalcitrant algal cellulose (AC) showed two bound populations: ~ 85% bound with shorter residence times of < 15 s while ~ 15% were effectively immobilized. The similarity between binding times of the WT and E212Q suggests that the single point mutation in the enzyme active site does not affect the thermodynamics of binding of this enzyme. The isolated catalytic domains, WTcore and E212Qcore, exhibited three binding populations on AC: ~ 75% bound with short residence times of ~ 15 s (similar to the intact enzymes), ~ 20% bound for < 100 s and ~ 5% that were effectively immobilized.Conclusions
Cel7A binding to cellulose is driven by the interactions between the catalytic domain and cellulose. The cellulose-binding module (CBM) and linker increase the affinity of Cel7A to cellulose likely by facilitating recognition and complexation at the substrate interface. The increased affinity of Cel7A to cellulose by the CBM and linker comes at the cost of increasing the population of immobilized enzyme on cellulose. The residence time (or inversely the dissociation rates) of Cel7A on cellulose is not catalysis limited.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%