Skip to main content
eScholarship
Open Access Publications from the University of California

Recognition Model with Narrow and Broad Extension Fields

Abstract

A recognition model which defines a measure of shape similarity on the direct output of multiscale and multiorientation Gabor filters does not manifest qualitative aspects of human object recognition of contour-deleted images in that: a) it recognizes recoverable and nonrecoverable contour-deleted images equally well whereas humans recognize recoverable images much better, b) it distinguishes complementary feature-deleted images whereas humans do not. Adding some of the known connectivity pattern of the primary visual cortex to the model in the form of extension fields (connections between collinear and curvilinear units) among filters increased the overall recognition performance of the model and: a) boosted the recognition rate of the recoverable images far more than the nonrecoverable ones, b) increased the similarity of complementary feature-deleted images, but not part-deleted ones, more closely corresponding to human psychophysical results. Interestingly, performance was approximately equivalent for narrow (±15') and broad (±90') extension fields.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View