Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Gadolinium Spin Decoherence Mechanisms at High Magnetic Fields

Abstract

Favorable relaxation processes, high-field spectral properties, and biological compatibility have made spin-7/2 Gd3+-based spin labels an increasingly popular choice for protein structure studies using high-field electron paramagnetic resonance. However, high-field relaxation and decoherence in ensembles of half-integer high-spin systems, such as Gd3+, remain poorly understood. We report spin-lattice (T1) and phase memory (TM) relaxation times at 8.6 T (240 GHz), and we present the first comprehensive model of high-field, high-spin decoherence accounting for both the electron spin concentration and temperature. The model includes four principal mechanisms driving decoherence: energy-conserving electron spin flip-flops, direct "T1" spin-lattice relaxation-driven electron spin flip processes, indirect T1-driven flips of nearby electron spins, and nuclear spin flip-flops. Mechanistic insight into decoherence can inform the design of experiments making use of Gd3+ as spin probes or relaxivity agents and can be used to measure local average interspin distances as long as 17 nm.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View