Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

CRISPR-Cas9-mediated functional dissection of 3'-UTRs.

  • Author(s): Zhao, Wenxue
  • Siegel, David
  • Biton, Anne
  • Tonqueze, Olivier Le
  • Zaitlen, Noah
  • Ahituv, Nadav
  • Erle, David J
  • et al.
Abstract

Many studies using reporter assays have demonstrated that 3' untranslated regions (3'-UTRs) regulate gene expression by controlling mRNA stability and translation. Due to intrinsic limitations of heterologous reporter assays, we sought to develop a gene editing approach to investigate the regulatory activity of 3'-UTRs in their native context. We initially used dual-CRISPR (clustered, regularly interspaced, short palindromic repeats)-Cas9 targeting to delete DNA regions corresponding to nine chemokine 3'-UTRs that destabilized mRNA in a reporter assay. Targeting six chemokine 3'-UTRs increased chemokine mRNA levels as expected. However, targeting CXCL1, CXCL6 and CXCL8 3'-UTRs unexpectedly led to substantial mRNA decreases. Metabolic labeling assays showed that targeting these three 3'-UTRs increased mRNA stability, as predicted by the reporter assay, while also markedly decreasing transcription, demonstrating an unexpected role for 3'-UTR sequences in transcriptional regulation. We further show that CRISPR-Cas9 targeting of specific 3'-UTR elements can be used for modulating gene expression and for highly parallel localization of active 3'-UTR elements in the native context. Our work demonstrates the duality and complexity of 3'-UTR sequences in regulation of gene expression and provides a useful approach for modulating gene expression and for functional annotation of 3'-UTRs in the native context.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View