Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Spectral properties, gas exchange, and water potential of leaves of glandular and non-glandular trichome types in Datura wrightii (Solanaceae)

Abstract

Plant trichomes commonly serve a role in mechanical and chemical defence against herbivores, but may also have the potential to alter physiology by reducing the amount of light absorbed by leaves, lowering temperatures, and reducing water loss. Populations of Datura wrightii Regel in southern California produce 'sticky' plants with glandular trichomes and 'velvety' plants bearing non-glandular trichomes. Because stickiness is inherited as a dominant Mendelian trait, and the proportions of sticky plants vary among populations with the moisture availability of their environment, there may be some ecophysiological differences between trichome types that contribute to their ability to survive in a particular geographic location. To examine the possible physiological significance of trichome variation, we measured the spectral properties, midday gas-exchange rates, and water potentials of D. wrightii leaves from sticky and velvety plants growing in a field experiment. The differences in leaf reflectance (0.9%) and absorptance (1.3%) of photosynthetically active radiation (PAR) between trichome types are too small to have any direct physiologically significant effect. Simulations of leaf temperatures based on the difference in leaf absorptances reveal that leaf temperature would be no more than 1degreesC lower in velvety compared to sticky plants. Gas-exchange measurements revealed no significant difference between types in their transpiration rates or stomatal conductances. In this case, trichome variation may be more important to plant defenses than to physiology.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View