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The scattered radio image of a pulsar, as a result of the radio wave passing

through the turbulent interstellar plasma, is a valuable probe of the plasma turbu-

lence. However the scattering angles are often so small, typically a few milli-arcsec,

that the radio image cannot be resolved even with very long baseline interferome-

try (VLBI).

We used several di↵erent methods to reconstruct the scattered brightness

image of pulsar B0834+06. We first combined the secondary spectrum technique

with VLBI astrometry and successfully mapped the scattered brightness image

xvii



of pulsar B0834+06 at 327 MHz with an angular resolution 100 times finer than

would have been possible with VLBI alone. We find that the scattering occurs

in a compact region about 420 pc from the Earth. This image has two compo-

nents, both essentially linear and nearly parallel. The primary feature is highly

inhomogeneous on spatial scales as small as 0.05 AU, and extremely anisotropic.

The second feature (called o↵set feature) is much fainter and is displaced from

the axis of the primary feature by about 9 AU. We find that the velocity of the

scattering plasma is 16 ± 10 km s�1approximately parallel to the axis of the lin-

ear feature. Another technique is then presented which allows reconstruction of

the core scattered brightness image in two dimensions from individual reversed

sub-arc, providing an estimate of the axial ratio of the anisotropic turbulence. we

obtained well-estimated 2 dimensional core image, and successfully estimated the

half power width in both parallel and perpendicular direction (⇠ 3.85 mas and ⇠

1.3 mas respectively) with axial ratio ⇠ 3. Based on previous knowledge that this

brightness image is highly elongated, we take it to the extreme and find a very good

scattered brightness model: a 1-dimensional curvi-line model for primary feature,

and a two straight-line linear model for o↵set feature. We also found that o↵set

feature is frequency dependent.

Considering all those interesting properties of this plasma turbulence, we

came up with two possible geometry models for the physical plasma turbulence be-

hind the scattered brightness image, the parallel geometry model and the orthog-

onal geometry model. Although no direct proof is available, we believe orthogonal

model fits our observation better. It doesn’t require the pulsar to be underneath

the center of the primary feature, and it’s easy to explain the similarity of those

two data sets 22 months apart. A prism-shaped screen provides an explanation of

the 1 ms o↵set feature and also helps to explain the frequency dependence of the

o↵set feature.
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Chapter 1

Introduction

1.1 Pulsars

A pulsar is a highly magnetized, rotating neutron star that emits a beam of

electromagnetic radiation. Neutron stars are very dense, and have short, regular

rotational periods. When the beam of emission is pointing towards the Earth,

radiation can be observed on Earth, like a lighthouse. Pulsars have very precise

periods which range from roughly milliseconds to seconds.

Pulsars were first discovered by Jocelyn Bell and Antony Hewish at Cam-

bridge University in 1967 [43]. It came about as a unexpected result of putting

into operation a large radio telescope array designed to study the interplanetary

scintillation of compact radio sources. Until now about 2000 pulsars have been

discovered, and the number has been increasing very fast due to continuing all-sky

surveys targeted at pulsars.

The formation of a pulsar begin when the core of a massive star is com-

pressed during a supernova and collapses into a neutron star. Since most of its

angular momentum is retained, a pulsar has very high rotation speed (in the range

of ⇠1.4ms to ⇠8.5s). A beam of radiation is emitted along the magnetic axis of

the pulsar, which spins along with the rotation of the neutron star. Its magnetic

axis is not necessarily the same as rotational axis, and this misalignment causes

1
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the beam to sweep like a lighthouse, which leads to the “pulsed” nature of its

appearance. It also means that we can see only a small fraction of the pulsars for

which the beam passes over the Earth.

Individual pulses vary greatly in intensity, However, if several hundred

pulses are added together, a very stable pulse profile is obtained. Duty cycle

(pulse time length over period) is typically 5%, some are much smaller than 1%,

some are nearly 100% too.

Pulsars are physics laboratories providing extreme conditions [44], i.e. deep

gravitational potentials, densities exceeding nuclear densities, high electric and

magnetic fields, which are not available on Earth. Magnetic fields which average

108 gauss can reach 1014 or 1015 gauss. Electric fields are high enough to cause pair

production so the pulsar wind is an electron-positron plasma. Pulse periods can

be measured with accuracies approaching 1 part in 1016, which makes it possible

to measure extremely small perturbations such as those that might be caused by

gravitational waves radiated by orbiting massive bodies, such as a pair of black-

holes.

The study of pulsars has resulted in many applications in physics and as-

tronomy, such as the confirmation of the existence of gravitational radiation as

predicted by general relativity and the first detection of an extrasolar planetary

system. Pulsar can also be used as precise clocks because of its precise period,

especially millisecond pulsars for which the long term stability is comparable with

our best atomic clocks. The radiation from pulsars passes through the interstellar

medium (ISM) before reaching the Earth. With their sharp and short-duration

pulse profiles, small angular size and very high brightness temperatures, pulsars

are unique probes to study the ionized interstellar medium (IISM).
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1.2 Interstellar Medium (ISM)

Interstellar medium is the matter that exists in the space between the stars

in our Milk Way Galaxy [1]. ISM usually contains interstellar matter, relativistic

charged particles known as cosmic rays, and magnetic fields. Interstellar matter

includes gas (99%) in molecular, neutral atomic, and ionized form and dust (tiny

solid particles, 1%). My thesis will focus on the ionized form. Of the gas in the

Milky Way, 90% by mass is hydrogen, with the remainder mostly helium. These

three basic constituents (interstellar matter, cosmic rays and magnetic fields) have

comparable pressures and are intimately coupled together by electromagnetic forces

[45].

The ISM is only a small fraction of the total mass of the Galaxy, and it does

not shine in the sky as visibly and brightly as stars do, but it plays a vital role in

many of the physical and chemical processes taking place in the Galactic ecosys-

tem, such as the cycle of matter from the ISM to stars and back to the ISM. A good

knowledge of the dynamics, energetics, and chemistry of the ISM helps us under-

stand the present-day properties of our Galaxy and predict its long-term evolution.

Roughly half the interstellar mass is confined to discrete clouds occupying

only ⇠1-2 % of the interstellar volume. These interstellar clouds can be divided

into three types: the dark clouds made of very cold molecular gas (T ⇠ 20 K), the

di↵use clouds, which consist of cold atomic gas (T ⇠100 K), and the translucent

clouds (mix of both cold molecular gas and cold atomic gas). The rest of the

interstellar matter, spread out between the clouds, exist in three di↵erent forms:

warm atomic, warm ionized, and hot ionized ( warm ⇠ 104 K, hot ⇠ 106 K).

Cold molecular (mostly H2) and cold atomic gas (mostly H I) represent

the raw material from which stars can be formed in the disk of the galaxy if they

become gravitationally unstable and collapse[47]. Warm atomic gas is also mostly

H I with T ⇠ 6000 � 1000 K. Although those clouds do not emit visible radia-

tion, molecular clouds can be detected by their radio and infrared emission and
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absorption lines. H I cloud can be detected by H I 21cm emission line wherever

it exists. It can be detected in absorption wherever H I absorbs some other more

distant radiation and a continuum radio source exists. Pulsars can be detected in

HI absorption sometimes when the HI is between the pulsar and the Earth.

Both warm and hot ionized gas are ionized hydrogen (H II), also called

plasma. Warm ionized gas is produced when the ultraviolet radiation emitted

by hot young stars ionizes surrounding clouds of gas. In warm ionized region,

hydrogen is almost fully ionized [45], and it can be observed by its H↵ emission

(an optical emission at a wavelength of 656 nm) and probed by pulsar dispersion.

While in hot ionized region, temperature is much higher so that not only hydrogen

but also metals are highly ionized[1]. It is now widely accepted that the hot ionized

gas is generated by supernova explosions and, to a lesser extent, by the generally

powerful winds from the progenitor stars [46]. Supernova explosions drive rapidly

propagating shock waves in the ISM, which sweep out cavities filled with hot rar-

efied gas and surrounded by a cold dense shell of collapsed interstellar matter[45].

1.3 Interstellar Radio Wave Propagation

The radiation from pulsars passes through the ionized interstellar medium

(IISM) before reaching Earth. Free electrons in the ISM directly a↵ects the inter-

stellar radio waves propagation in a few di↵erent ways resulting in the phenomena

of dispersion, scattering and scintillation. The influence on the pulsar’s radiation

provides an important probe of the IISM itself [45].

1.3.1 Dispersion

In the ionized ISM the refractive index (n) can be expressed as

n =

r
1 �

w2
p

w2
(1.1)

w
p

is the plasma frequency which is proportional to
p

N
e

, N
e

is the electron number
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density of the plasma. Phase velocity V
p

= C/n, C is the light speed. The

propagation constant k = w/V
p

= nk0. The group velocity V
g

= dw/dk. In this

particular case, V
g

= Cn, it means that higher frequency radio wave travels faster

than lower frequency, the resulting delay in the arrival of pulses at a range of

frequencies is directly measurable as the dispersion measure (DM) of the pulsar.

The dispersion measure is the total column density of free electrons between the

observer and the pulsar.

DM =

Z
D

0

N
e

(s)ds (1.2)

Here D is the distance from the pulsar to the observer. Usually pulsar with bigger

DM is further away than pulsar with smaller DM, but it’s not always true since

DM also depends on electron density.

Pulsar signal is a broadband signal, the dispersion in arrival time across

the bandwidth of a receiver broadens the pulse profile. Since pulsar duty cycle

is typically very small, DM can be roughly estimated by measure the width of

broadened pulse.

To recover the emitted pulse profile of a pulsar[48], dispersion has to be

removed as the first process of pulsar signal processing. Both coherent and in-

coherent de-dispersion algorithms can be applied to remove the dispersion e↵ect.

Coherent de-dispersion is a linear operation, it requires more calculation but it

can remove it completely while incoherent de-dispersion uses filter bank to remove

group delay between di↵erent channel in a more calculation e�cient way. Although

the dispersion within each channel can not be removed using incoherent method,

satisfactory result can be achieved by using su�cient number of channels in the

filter bank.

1.3.2 Scattering

If the IISM had no electron density fluctuations transverse to the line of

sight, only dispersion will be observed. However there are transverse fluctuations
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in plasma density which modulate the phase of the radio wave. The phase modu-

lations causes angular scattering, The angular scattering causes other phenomena

including pulse broadening and intensity scintillation. Scattering and scintillation

are our main research interests. They are di↵erent observable phenomena but from

the same cause. Our research relates those two phenomena and provides a way to

reconstruct the underlying scattered image of the pulsar.

Angular Broadening

Radio waves from pulsar are forced to deviate from a straight trajectory

when they pass the in-homogenous IISM, which causes an angular broadening

phenomena when we observe on the Earth. Since pulsar can be treated as a point

source, the fine structure of ionized ISM can be revealed by this broadened pul-

sar image which we call the pulsar scattered brightness image denoted by B(✓).

Because of the frequency dependence of the plasma refractive index Eq 1.1, the

angular width of the scattered image varies as wavelength.

Traditionally VLBI interferometry provides the highest angular resolution

imaging technique which is limited by di↵raction to �/b over a baseline length b at

frequency � . Because the scattered image is typically smaller than this resolution,

it can not normally be resolved by VLBI. Our research uses parabolic arc theory

to indirectly construct the scattered brightness image at much finer resolution.

Temporal (Pulse) Broadening

The scattering in IISM causes multi-path interference, each path has a

di↵erent time delay which leads to temporal broadening in observed individual

pulses. For homogeneous scattering most of the signal arrives with a small scat-

tering angle and a small delay, but the more highly scattered radiation leads to an

approximately exponential tail.
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1.3.3 Scintillation

RISS, DISS and Dynamic Spectrum

Scintillation refers to the intensity fluctuations in observed radio sources

caused by propagation from the source to the observer through the turbulent in-

terstellar plasma. There are two scintillation phenomena: di↵ractive ISS (DISS)

and refractive ISS (RISS). DISS is the faster fluctuation (in the scale of minutes

and hours) while RISS is relatively slow (in the scale of days or even months).

RISS corresponds to larger spatial-scale which makes it possible to analyze larger

spatial-scale structure in the IISM, and it is not very sensitive to the size of the

radio source (Compact radio sources, such as AGN’s and galactic masers, are small

enough). DISS, on the other hand, provides a tool to analyze small spatial-scale

structure (<< 1AU) in the electron density in ISM, and requires a small radio

source as a probe (<< 104km for B0834+06). Pulsars have very small diameter

which ensures that they can be considered as an un-resolvable small radio source,

and they can display the full range of scintillation and scattering phenomena, and

it makes it possible to probe the small spatial-scale structure. Our research focuses

on DISS.

DISS is seen in the dynamic spectrum, a two dimensional distribution

I(⌫, t). Each point in the dynamic spectrum is obtained by summing over the

on-pulse portions of several pulse periods (depends on the time resolution) at time

t in one channel spectrometer centered at frequency ⌫, with the o↵-pulse por-

tions subtracted. Telescope mean system noise can be removed by subtracting the

o↵-pulse too. RFI usually shows as an increase at constant frequency or at a con-

stant time, i.e. it is either narrow band and not time variable or broad band and

short time. So it can often be detected and removed from a dynamic spectrum.

Figure 1.1 is the dynamic spectrum of PSR B0834+06 observed at the Arecibo

Observatory on 2003 December 31[21]. The flux density as a function of frequency

and time is shown using a gray scale that is linear in power, with dark regions

indicating high power. The time spans are less than 1 hour and suppress any re-

fractive intensity fluctuations. The dynamic spectrum shows some periodic fringes
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in this example, which also shows the phenomenon of di↵ractive scintillation.
L172 HILL ET AL. Vol. 619

Fig. 1.—Dynamic spectrum of PSR B0834!06 observed on 2003 December
31. The flux density as a function of frequency and time is shown using a gray
scale that is linear in power, with dark regions indicating high power. The criss-
cross pattern is due to radio waves reaching the observer from a variety of angles
(∼10 mas away from the pulsar position), as detailed in the text.

Fig. 2.—Secondary (or delay–fringe-frequency) spectrum corresponding to
the dynamic spectrum in Fig. 1. The gray scale is logarithmic in power and
represents a total range of about 105 from the maximum power to the noise
level. A primary arc with curvature , fitted to the left side of the3h p 0.47 s
main parabola, is shown with a dashed line. Numerous inverted parabolas, or
arclets, are present with vertices near the primary arc. The four isolated arclets
(labeled a–d ) each correspond to a distinct enhancement in the pulsar image.
The horizontal axis can be converted into a separation angle projected along
the direction of pulsar motion using .2 mHz ≈ 1 mas

thin scattering screen, where s is the fractional position of the
screen from the pulsar ( ) to the observer ( ), iss p 0 s p 1 Vp
the transverse velocity of the pulsar, is the transverse ve-Vobs
locity of the observer, and is the transverse velocity of theVs
screen. Interference between two arbitrary points in the image
plane, and , causes fringing in the dynamic spectrum withv v1 2
conjugate time and conjugate frequency of f p "(v "t 2

and , where l is the2 2v ) · V /(sl) f p D(1" s)(v " v )/(2sc)1 eff n 2 1
observing wavelength. The coordinate is a measure of dif-fn
ferential time delay between pairs of rays, and represents theft
temporal fringe frequency of the interference between the two
rays or, alternatively, the differential Doppler shift between
them. Interference between the ray at the origin and points
along the -axis produces a parabolic scintillation arc definedvx
by , where the arc curvature parameter is2f p h fn t

2Dl s(1" s)
h p . (2)22cVeff

Interference between the origin and points with nonzero vy
places power inside the parabola because . Inter-2 2f ∝ v ! vn x y

ference between a bright spot in the periphery of the image
and the rest of the image produces an inverted parabola or
arclet with the same and a vertex with an -coordinate thatFhF ft
is related to the -coordinate1 of the bright spot byvx

sl
v p " f . (3)x t( )Veff

Such features are accentuated when the image is elongated
along the velocity vector or the bright spot lies near the -vx
axis, or both.
For pulsars with measured proper motions and measured or

1 The minus sign in eq. (3) and in the defintion of is present becauseft
negative -values correspond to deflected rays in front of the moving pulsar;ft
points behind the moving pulsar (past closest encounter to the deflecting struc-
ture) produce a positive feature.ft

estimated distances, we can determine the location of the dom-
inant scattering material from the curvature of the main scin-
tillation arc using equation (2). PSR B0834!06 has an esti-
mated distance (Cordes & Lazio 2003) and a moderately
well-determined proper motion (Lyne et al. 1982): D p

and . We have mea-"10.64! 0.08 kpc m p 51! 3 mas yr
surements of scintillation arcs in PSR B0834!06 dating back
to 1981 (D. R. Stinebring et al. 2005, in preparation). Those
data and the observations presented here are consistent with a
value of at 327 MHz. This results in a value3h p 0.47! 0.03 s
of or a screen that is located at a distances p 0.29! 0.04

from the observer. These parameters yield a0.46! 0.08 kpc
conversion between and the angle on the sky off 50 mHz pt

. Hence, the angular resolution of the secondary spectrum24 mas
is mas pixel"1; the useful field(2# 24 mas/180 pixels)p 0.27
of view is about 40 mas.

3. OBSERVATIONS

To search for evidence of compact refractors using pulsar
scintillation, we observed the pulsar PSR B0834!06 at the
Arecibo Observatory2 in 2004 January using the same tech-
nique as Hill et al. (2003). An example dynamic spectrum is
shown in Figure 1. We obtained dynamic spectra during 30–
60 minute integrations using the 327 MHz receiver with spec-
tral resolutions of approximately 1.5 kHz on 11 days over a
26 day period. Typically, we simultaneously took data with
center frequencies of 321 and 334 MHz using multiple Wide-
band Arecibo Pulsar Processor spectrometers. The secondary
spectrum in Figure 2 exhibits a scintillation arc as well as
numerous arclets. The four isolated arclets, labeled a–d, shifted
upward and to the right along the main parabola during the

2 The Arecibo Observatory is operated by Cornell University under a co-
operative agreement with the National Science Foundation.

Figure 1.1: Dynamic spectrum example, PSR B0834+06 observed at the Arecivo
Observatory on 2003 December 31 [21]

Secondary Spectrum

Secondary Spectrum is the squared amplitude of the two-dimensional Fourier

transform, Ĩ(⌧, fD), of the dynamic spectra of intensity. Figure 1.2 is the secondary

spectrum corresponding to the dynamic spectrum in Figure 1.1 [21]. The gray scale

is logarithmic in power. Fringes in the dynamic spectrum appear as discrete fea-

tures in the secondary spectrum which is due to the interference between pairs

of points on the scattering screen, such as shown in Figure 1.3. Delay (⌧) is the

di↵erential delay between one pair of paths, and di↵erential Doppler frequency, or

called fringe frequency (fD), is the di↵erence of the Doppler frequency of each path.

In Figure 1.2, there are some faint but clearly visible power extends away
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from the origin in a parabolic pattern, this pattern is called parabolic arc. More

details will be discussed in the later section.

Figure 1.2: Secondary spectrum example [13]

1.3.4 Plasma Turbulence in ISM

Scintillation and scattering have been observed from hundreds of pulsars

over forty years since their discovery. These can be adequately explained by prop-

agation through the IISM, modeled as a turbulent plasma with a homogenous

isotropic 3D Kolmogorov spectrum of electron density. The resulting 2D scattered

brightness image can use the following approximation if the spectrum of the phase

fluctuations is Kolmogorov.

B(✓
x

, ✓
y

) =
C0

(1 + ( ✓

x

✓

x0
)2 + ( ✓

y

✓

y0
)2)11/6

(1.3)
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However, inhomogeneity has been observed on di↵erent scales in the tur-

bulence, from kiloparsec scales [9] to parsec scale in the local ISM [14] [22], to

AU-scale inhomogeneity which is observed from extreme scattering events (ESEs)

[18] [23] [33]. There is also evidence that interstellar scattering is not only in-

homogeneous but also anisotropic. Anisotropy in the ISS di↵raction pattern has

been measured indirectly [30] [7]. Such observations give evidence for elongated

fine structure in the ISM on scales of thousands of kilometers. All those evidences

show the existence of compact (AU-scale) ionized structure in ISM, which we refer

as a cloud, whose scattering is inhomogeneous and anisotropic. Such clouds be-

have as a scattering screen[27] [31] since they are much thinner than the distance

between pulsar to the Earth. Because of their small scale, those clouds are still

hard to observe directly. In this thesis, we developed a number of algorithms to in-

directly construct scattered brightness image showing inhomogeneous anisotropic

turbulence.

1.4 Theory of Parabolic Arc

1.4.1 Simple scattering screen theory

The parabolic arc phenomenon discovered by Stinebring [35] provides a

powerful tool to probe ionized clouds. Theory of parabolic arcs is based on the

assumption that scattering is dominated by a single local scattering region which is

very thin compared with the distance from the pulsar to the Earth. This assump-

tion is called simple scattering screen theory and thin region is called scattering

screen. Figure 1.3 shows the geometry of pulsar and scattering screen, and all scat-

tering models and their corresponding algorithms in this thesis are based on simple

screen. This figure demonstrates the scattering screen bends two radio waves from

the same pulsar and they arrive on Earth with di↵erent angles (✓1 and ✓2) and

interfere at the telescope.

Based on the geometry in Figure1.3, Equations 3.1 [13] shows the interfer-

ence relationship between di↵erential delay, di↵erential Doppler frequency and ✓1

and ✓2.
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Here Deff and Veff are effective distance and velocity of the scattering screen. Veff = (1-s)/sVp + Ve – 1/sVs and Deff = L(1-
s)/s, where Vp Ve and Vs are the velocities of the pulsar Earth and screen, L is the distance between pulsar and Earth, s 
is the ratio of distance between pulsar and screen and distance between pulsar and Earth.  

        
Figure 2 Geometry of pulsar and scattering screen                          Figure 3 Right Ascension and Declination relative to pulsar   

1.3 Astrometric imaging 

Consider an interferometer with baseline b. Under the condition that a single pair of scattered points contributes to each 
pixel in the secondary spectra, one can show that phase of secondary visibility spectra V~ (Ĳ, fD, b) at that pixel consists 
of a symmetric term that encodes the average position of the two scattered points (ș1 and ș2) and an anti-symmetric part 
that depends on the differences in phase perturbation caused in the screen and on the differing path lengths from ș1 and 
ș2

 [1]. After we cancel the anti-symmetric part by taking product of V~ (Ĳ, fD, b) and (V~ (-Ĳ, -fD, b)), the phase of C (Ĳ, fD, 
b) has a simple astrometric relation with the baseline b and scattering angles ș1 and ș2 

ȥ(b)  = k b•(ș1 + ș2) ± 2ʌ                  (3)    

On the apex of a reversed arclet, one of the scattering angles (ș2) is zero, so we can solve the other scattering angle (ș1) 
without knowing any scattering model information. So we found the delay and Doppler of the apexes of all of the arclets 
which could be reliably identified and used the apex phases from the 6 baselines to fit for associated ș1 positions and 
their errors.  For delays less than 0.4 msec the arclets are closely crowded together and hard to identify.  So we also 
sampled the visibility phases along the main forward arc, which we assume approximates the apexes at lower delays. 

The astrometric positions and their errors from both the main arc and from the apexes of the identified arclets are plotted 
in figure 3. The black dots are sampled along the main forward arc.  The black crosses are the positions fitted from the 
individually identified arclet apexes.  The two techniques agree well and do not suffer from any lobe ambiguities, since 
they form a continuous linear structure. The points near 1 msec delay suffer from a phase ambiguity on the trans-Atlantic 
baselines.  By studying the wavelength dependence of the positions we were able to resolve the ambiguity which is 
plotted with black error bars in the right corner from the identified 1 msec apexes.  By recovering the image from 
reversed arclets, we greatly improve on the 20 mas VLBI resolution to achieve a very fine resolution (0.5 mas). 

Proc. of SPIE Vol. 7800  78000M-3

Figure 1.3: Geometry of pulsar and scattering screen

f
D

=
(✓1 � ✓2) · V

eff

�
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⌧ =
(✓2
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2)Deff
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Where V
eff

is e↵ective velocity which is a combination of velocity of pulsar, Earth

and screen, D
eff

is the e↵ective distance which counts in both the distance of pulsar

and screen to Earth. When the interference is between the bright center (✓2 = 0)

and an essentially linear scattered image, then ⌧ is a quadratic function of f
D

, this

type of interference produces a primary parabolic arc.

⌧ =
�2D

eff

2cV
eff

2 cos2 ↵
f 2

D

(1.6)

Where ↵ is the angle between this linear image and e↵ective velocity. When the

interference is between a bright o↵set spot (at ✓2) and the linear core image, then

a reversed parabolic arc with the same curvature is produced.

⌧ = �

�2D
eff

2cV
eff

2 cos2 ↵
(f

D

� f
D0)

2 + ⌧0 (1.7)
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Where (f
D0 ⌧0) corresponds to the bright o↵set spot at ✓2.

1.4.2 Observed Parabolic Arc

Observing bright pulsar with high dynamic range provided by big telescope,

sometimes parabolic arc can be seen in the secondary spectrum. The curvature

depends on the frequency, pulsar and scattering screen. Parabolic arcs are are

seen most clearly when the scattered image is essentially linear. If SNR is high

enough, some reversed arclets, called sub-arcs, are visible too. They have the same

curvature with apexes lie along or close to the main parabolic arc. In Figure 1.2,

the parabolic arc’s curvature ⌘ is 0.47s3 shown with a dashed line. There are

four isolated reversed sub-arc labeled a-d on the positive doppler side. Here we

also call the main parabolic the forward parabolic arc. Forward parabolic arcs

are due to the interference between the entire outer part of the scattered image

and the bright un-scattered emission at the origin, while sub-arcs are due to the

interference between outer bright point and the core scattered image. More details

of parabolic arcs will be discussed in chapter 2.

1.5 Content of thesis

Chapter 2 is a paper published by Brisken et al, (2010), I am a co-author on

that paper. Walter Brisken and Adam Deller arranged the observations, recorded

the data and correlated it, and my advisors (Barney Rickett and William Coles)

and I did all imaging and data analysis on those data. In this paper, we used

astrometry on the dynamic visibility spectrum observed by a VLBI network to

successfully map the scattered brightness astrometrically with much higher resolu-

tion than the di↵ractive limit of the interferometer. We employ this technique to

measure an extremely anisotropic scattered image of the pulsar B0834+06 at 327

MHz. We find that the scattering occurs in a compact region about 420 pc from

the Earth. This image has two components, both essentially linear and nearly

parallel. The primary feature is highly modulated on spatial scales as small as

0.05 AU. The second feature is much fainter and is displaced from the axis of the
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primary feature by about 9 AU. We find that the velocity of the scattering plasma

is 16 ± 10 km s�1approximately parallel to the axis of the linear feature. However,

the core scattered image is unclear which makes it impossible to estimate of the

axial ratio of the plasma turbulence. And only scattering positions are determined,

no brightness estimation is achieved.

In chapter 3, a new technique is used which allows reconstruction of the

core scattered image in two dimensions, providing a way to estimate of the axial

ratio of the anisotropic turbulence. This technique relies on the assumption that

the o↵set source is point source, and it uses the modeling of sub-arcs in secondary

spectrum, which originates from the interference between an o↵set bright point in

the scattered image and the core. The algorithm was tested using simulated data

that confirms its operation and examines how the size of o↵set bright point can

a↵ect the reconstruction of the core image. Using the ensemble-averaging model,

we obtained a 2-D core image, and successfully estimated the half power width in

both parallel and perpendicular direction (⇠ 3.85 mas and ⇠ 1.3 mas respectively)

with axial ratio ⇠ 3.

Chapter 4 is based on the result from [41], which is the decomposed scat-

tered waves’ components: amplitude |µ̃
j

|, Doppler shift f
Dj

and delay ⌧
j

, we de-

velop a direct relationship between (f
Dj

, ⌧
j

) and the apparent positions ✓ of the

scattered waves to reconstruct the scattered image. However, it can’t resolve the

position ambiguity since there is no phase information in the result of [41]. With

the assistance of the estimated axis angle from astrometry in chapter 2, and the

knowledge that two ambiguities are symmetric to the velocity axis, we flipped some

part of the brightness image along the velocity axis and got another estimate of the

scattered image, except the center part which is partially unresolved. This work is

based on the same pulsar but a di↵erent dataset, which is 22 months earlier than

the main dataset in all other chapters.

From all those techniques we find that the features in the scattered image
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are highly elongated. In chapter 5, an alternative is considered as a 1-dimensional

straight-line brightness distribution and its modified curvi-line distribution are in-

troduced to model this scattered image. Based on those models, both primary

feature and 1ms feature are analyzed and converted from secondary spectrum

domain back to brightness distribution in both parallel ✓k and perpendicular ✓?

direction. Algorithms are developed for the steepest gradient fitting and a modified

version of ’clean’ method to estimate brightness and ✓?. We get a well-estimated

one dimensional brightness image of the primary feature with ✓? fluctuation. And

we found that two straight-line linear model can better describe the o↵set feature,

we also found that o↵set feature is frequency dependent.

In chapter 6, the overall conclusion of this research and possible physical

explanation of this scattered image are covered. We summarize all the properties

of our reconstructed brightness image. Based on estimated scattered brightness

and its properties, we came up with two possible geometry models for physical

plasma turbulence, Parallel geometry model and orthogonal geometry model, and

conclude that the orthogonal model fits our observation better than the parallel

model.



Chapter 2

100 µas resolution VLBI imaging

of anisotropic interstellar

interstellar scattering toward

pulsar B0834+06

W. F. Brisken, J.-P. Macquart, J. J. Gao, B. J. Rickett, W. A. Coles, A. T. Deller,

S. J. Tingay, C.J.West

This is the reprint of published paper [2]

2.1 Abstract

We have invented a novel technique to measure the radio image of a pul-

sar scattered by the interstellar plasma with 0.1 mas resolution. We extend the

“secondary spectrum” analysis of parabolic arcs by Stinebring et al. (2001) to very

long baseline interferometry and, when the scattering is anisotropic, we are able

to map the scattered brightness astrometrically with much higher resolution than

the di↵ractive limit of the interferometer. We employ this technique to measure

an extremely anisotropic scattered image of the pulsar B0834+06 at 327 MHz. We

15



16

find that the scattering occurs in a compact region about 420 pc from the Earth.

This image has two components, both essentially linear and nearly parallel. The

primary feature, which is about 16 AU long and less than 0.5 AU in width, is

highly inhomogeneous on spatial scales as small as 0.05 AU. The second feature is

much fainter and is displaced from the axis of the primary feature by about 9 AU.

We find that the velocity of the scattering plasma is 16 ± 10 km s�1approximately

parallel to the axis of the linear feature. The origin of the observed anisotropy is

unclear and we discuss two very di↵erent models. It could be, as has been assumed

in earlier work, that the turbulence on spatial scales of (⇠ 1000 km) is homoge-

neous but anisotropic. However it may be that the turbulence on these scales is

homogeneous and isotropic but the anisotropy is produced by highly elongated

(filamentary) inhomogeneities of scale 0.05-16 AU.

2.2 Introduction

Radio pulsars provide a powerful tool for studying the ionized interstellar

medium. The dispersion in their pulse arrival times probes the mean electron

density. Their very small diameters ensure that they display the full range of

scintillation and scattering phenomena, which probe the fine spatial structure in

the electron density. Their pulse amplitudes exhibit a combination of di↵ractive

and refractive intensity scintillation on times from seconds to months. Compact

emission from some bright active galactic nuclei can also show scintillation on

times of hours to months, albeit smoothed by the e↵ect of their larger angular

diameters. The large body of pulsar scintillation data has been interpreted in

terms of homogeneous isotropic Kolmogorov turbulence in the interstellar plasma

[3]. See reviews by [28, 26].

However, a litany of observational evidence now points to the existence

of compact ionized structures in the interstellar medium (ISM) whose scattering

characteristics are well beyond those of such homogeneous isotropic Kolmogorov

turbulence. In particular the scattering is seldom uniformly distributed along the

line of sight. It is often dominated by one local region somewhere in the line of
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sight, which we refer to as a “thin screen.” Although it is unlikely to resemble

a screen, it is thin with respect to the total line of sight from the source to the

observer [27, 31]. Inhomogeneity in the turbulence is required on kiloparsec scales

to explain how the level of pulsar scattering varies with distance and Galactic

coordinates [9]. Inhomogeneity is also required on the parsec scale in the local ISM

to explain the intermittent nature of the scintillation observed in a few quasars on

hour-long time scales [14, 22].

In addition, evidence for AU-scale inhomogeneity in the turbulence comes

from extreme scattering events (ESEs), which are observed in a few quasars as

rare, large (10 to 50%) variations in flux density over several weeks [18, 23, 33].

These are generally seen as a decrease in flux density attributed to the passage

across the line of sight of an ionized cloud which either scatters [18] or refracts [32]

the radiation.

In recent years there has also been increasing evidence that interstellar

scattering (ISS) is not only inhomogeneous but also anisotropic. The most direct

measure of anisotropy is through very long baseline interferometry (VLBI) imaging

of scattered brightness, but it is only detectable on a few heavily scattered lines

of sight [17]. Anisotropy in the ISS di↵raction pattern has also been measured

indirectly [30, 14, 7, 4]. Such observations give evidence for elongated fine structure

in the ISM on scales of thousands of kilometers, suggesting anisotropic magneto-

hydrodynamic turbulence controlled by the magnetic field as discussed by [19] and

[34].

The examples cited above show departures from both homogeneity and

isotropy in the ionized ISM. It is possible, but by no means proven, that the various

phenomena have a common origin in a population of AU-scale anisotropic regions

of enhanced density and turbulence which we here generically refer to as “clouds.”

However, we note that such localized clouds must contain fine scale substructure

that causes scattering at radio frequencies. Such a population of clouds presents a

serious puzzle. Their number density must be many orders of magnitude greater

than that of stars and their implied electron densities ne
⇠

> 10 cm�3 are much

higher than expected in pressure equilibrium in the warm ionized phase ISM [32].
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The discovery of parabolic arcs in the ISS of pulsars by [35] has added a

powerful new tool for probing such clouds. Many pulsars exhibit parabolic arcs

in their secondary spectra (SS), which is the power spectrum (versus delay and

Doppler frequency) of the dynamic spectrum of intensity (versus frequency and

time). The arcs are sometimes narrow (in delay) which implies scattering by a

thin layer. The distribution of power in the SS often reveals anisotropic scatter-

ing and in some cases there are discrete downwards facing “arclets,” which also

imply scattering from isolated anisotropic clouds (“cloudlets”). See [13, 38] for

interpretation of the arcs.

The SS allows a two dimensional reconstruction of the scattered image from

observations at a single receiver, since each point in the SS isolates the scintillation

power associated with interference between pairs of points on the scattering disk.

However the reconstruction can be model dependent and has an inherent two-

fold ambiguity [13, 37]. Occasionally one can also see isolated peaks in the SS

corresponding to narrow bandwidth fringes in the dynamic spectrum [40, 29]. Such

fringes result from interference between the normal primary (on-axis) scattering

disk and the o↵-axis discrete cloud.

Recent results from [21] have compounded the di�culties in understanding

the nature of the underlying ionized clouds. They observed the SS towards pulsar

B0834+06 and found four distinct arclets scattered through 7 to 12 mas which they

interpreted as originating from ⇠0.2 AU clouds requiring ne > 100 cm�3, similar

to those invoked to explain ESEs towards quasars. By monitoring the evolution of

structures in the secondary spectrum, they followed these clouds over three weeks

and showed that they co-moved with the rest of the scattering material.

In this paper we report VLBI observations of the scintillation from the

same pulsar (B0834+06) in order to further investigate these clouds. We have de-

veloped a novel astrometry technique that makes use of SS-like quantities derived

from the interferometer visibilities. Using these “secondary cross spectra” (defined

in Table2.3), we can accurately localize points on the scattering screen correspond-

ing to high signal-to-noise pixels of the SS. We use the results of the astrometry

of many such points to measure the distance and velocity of the interstellar clouds
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and so define a precise model for the scattering. Applying this precise model to

the astrometric image with the scattering model allows us to eliminate all the oth-

erwise troublesome ambiguities and validates the model. We then use this precise

model to recover the scattered image with even greater angular resolution from

the secondary spectrum itself. In our observations the Rayleigh resolution (i.e.,

synthesized beam) of the VLBI array is about 35 mas, the astrometric precision is

about 1 mas, and structure in the scattered image recovered by modeling is found

on a scale of 100 µas.

2.3 Observations and Primary Analysis

Pulsar B0834+06 was observed as part of a global VLBI project on 2005

November 12. To obtain the greatest astrometric precision we used four of the

largest telescopes in the global VLBI network: Arecibo (AO); the Green Bank

Telescope (GBT); Jodrell Bank (JB); and tied-array Westerbork (WB). We used a

somewhat lower frequency than most secondary spectrum observations (327 MHz)

in order to obtain higher angular scattering and thus to better resolve the image

with astrometry. Baseband data were recorded using the Mark5A disc recorders at

all antennas. Four dual circular polarization 8 MHz bands spanning the frequency

range 310.5 to 342.5 MHz were recorded with four-level quantization, yielding a

total data rate of 256 Mbps per antenna. In order to minimize unwanted signals

that may correlate between stations, the pulse calibration signals were disabled at

all of the antennas. A total of 5700 s of on-source data were recorded.

An initial correlation was performed using the VLBA correlator in Socorro,

NM with typical continuum VLBI spectral and temporal resolutions. These cor-

relator products were used for delay and bandpass determination. The raw data

were recorrelated at Swinburne University with the DiFX software correlator [15],

whose flexibility enabled the data to be processed with extremely high spectral

resolution. The output visibilities consisting of 32768 spectral channels per 8 MHz

band (244 Hz resolution) were dumped every pulse period (1.25 s). The software

correlator used incoherent dedispersion to apply a 125 ms wide on-pulse bin; both
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the on- and o↵-pulse visibilities were recorded. The timing information from which

the gate ephemeris was derived was determined through simultaneous pulsar tim-

ing observations made at the GBT.

Dynamic spectra were constructed from the autocorrelation spectra gener-

ated by the correlator for each polarization. In an analogous manner, dynamic

cross spectra were formed from the cross correlation spectra (visibilities). In the

case of the power spectra the o↵-pulse spectra were subtracted from the on-pulse

spectra, removing the telescope system noise and most radio frequency interference

(RFI). This was not necessary in forming clean dynamic cross spectra because the

noise and RFI are not correlated between any two antennas. Both the dynamic

spectra and the dynamic cross spectra were averaged into 5-pulse time blocks to re-

duce the e↵ect of the strong pulse-to-pulse intensity fluctuations. The total power

in each 8 MHz band was constrained to be constant, a reasonable condition con-

sidering that 8 MHz is much wider than the di↵ractive scintillation bandwidth,

measured here as �⌫ ⇠ 3 kHz, which we note is considerably narrower than 38 kHz

from [8]. This process will suppress any refractive intensity fluctuations, however

these would have a time scale of many days.

The instrumental bandpasses were corrected using interferometric observa-

tions of a strong background source. Delay, phase and amplitude calibration were

derived from the observations of the target source itself using the coarsely averaged

visibility data from the VLBA correlator. Since this applies self-calibration, the

astrometric positions which we determine below are all referenced to the centroid

of the intensity. After calibration, the two circular polarizations were summed to

form the Stokes parameter I in order to maximize the signal to noise ratio, giv-

ing the dynamic spectra of total intensity, I(f, t), for each antenna, and visibility,

V (f, t,b), for each baseline b.

2.3.1 Secondary Spectrum Analysis and Arcs

The secondary spectra, A(⌧, fD), are squared amplitudes of the two di-

mensional Fourier transforms, Ĩ(⌧, fD), of the dynamic spectra of intensity. Here

the transform variables conjugate to frequency, f , and time, t, are delay, ⌧ , and
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Doppler frequency, fD, respectively. The quantity Ṽ (⌧, fD,b) represents the com-

plex two-dimensional Fourier transforms of the complex dynamic cross spectra. As

some of the quantities we discuss in this work have not yet been introduced in the

literature, we summarize in Table 2.1 the conventions we adopt throughout for the

various products derived from the correlator auto and cross correlations.

The dynamic spectra have a spectral resolution of 244 Hz over 8 MHz and

temporal resolution of 6.25 s (about 5 pulsar rotation periods) over the observation

duration of 6500 s, which are well-suited to resolving the di↵ractive scintillation,

whose time scale is ⇠ 1 min and frequency scale is ⇠ 3 kHz. Thus the secondary

spectra have a resolution of 125 ns in delay out to a maximum of 2.05 ms. They

have resolution in Doppler frequency of 0.15 mHz over a width of ± 80 mHz.

Custom software was used for this and all subsequent data processing.

For the first time, dynamic spectra of right minus left circular polarization

and the corresponding secondary spectra were computed to test for di↵erential

Faraday rotation in the ISM [25]. No detectable signal, significant at the 0.1%

level, was found in any of these di↵erenced spectra. In a simple model this implies

rotation measure di↵erences across the image of less than ⇠ 1.2⇥ 10�3 rad m�2 on

AU scales [25].

The amplitude of the quantity Ṽ (⌧, fD,b) Ṽ (�⌧, �fD,b) is plotted in Fig-

ure 2.1. This quantity is a generalization of the secondary spectrum to the inter-

ferometric case and will be discussed later. The plot extends to a delay of 2 ms,

which is considerably greater than has been published before, and is plotted with

higher Doppler frequency and delay resolution than is usual. It thus reveals some

interesting features. It is composed of a dense forest of fine arclets in which the

apex of each arclet lies on or near the upwards facing main arc and all arcs are

parabolic with the same curvature, as shown by [21]. The disjoint group of arclets

near 1 ms in delay with negative Doppler frequency is particularly striking and

will be referred to as the 1 ms feature. Their apexes lie inside the main arc and,

as we find below, they form a separate and distinct part of the scattered image.

Some faint arclets on the positive Doppler frequency side can be identified with

delays as high as 2 ms, although they are not readily visible in this figure.
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Table 2.1: Definitions of various products derived from the measured intensities
and visibilities used throughout this text. In the definitions for the first two quan-
tities, E is the electric field as measured by the antenna receiver and the angle
brackets denote a time average over the measurement interval much longer than
the inverse bandwidth.

Term Symbol Remarks
Correlator products (2nd order in electric field)

Dynamic I(f, t) = h|E(f, t)|2i the power of the electric
spectrum field as a function

of frequency and time
Dynamic cross V (f, t,b) = hE1(f, t)E⇤

2(f, t)i the visibilities measured
spectrum on a baseline b as a

function of freq and time
Intermediate quantities (2nd order in electric field)

� Ĩ(⌧, f
D

) = FT [I(f, t)] the Fourier transform of
the dynamic spectrum

� Ṽ (⌧, f
D

,b) = FT [V (f, t,b)] the Fourier transform of
dynamic cross spectrum

Derived quantities (4th order in electric field)
Secondary A(⌧, f

D

) = |Ĩ(⌧, f
D

)|2 the squared-modulus of
spectrum the Fourier transform of

the dynamic spectrum
Secondary cross C(⌧, f

D

,b) = the (complex) product of
spectrum Ṽ (⌧, f

D

,b)Ṽ (�⌧, �f
D

,b) Ṽ (⌧, f
D

,b) and its
corresponding quantity
at the point (�⌧, �f

D

)

2.4 Theory of Secondary Cross Spectra

Here we briefly outline the theory of the arcs and refer the reader to [38]

and [13] for more complete analyses. Points distributed along the main parabolic

arc are due to interference between a highly scattered component at ✓ and the

components arising from near the pulsar brightness centroid at ✓ = 0. In this

case there is a di↵erential delay ⌧ = ✓2De↵/2c and di↵erential Doppler frequency1

fD = Ve↵ ·✓
/

�. Here De↵ and Ve↵ are the e↵ective distance and velocity vector of

the scattering screen as defined in §2.5, and � is the observed wavelength. If the

scattered image is essentially linear, through the origin at angle ↵ with respect to

1Henceforth these terms will be abbreviated to delay and Doppler.
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Figure 2.1: The amplitude (left) and phase (right) of the secondary cross spec-
trum C, defined in Table2.1, for the 8 MHz wide 314.5 MHz sub-band on the
AO-GBT baseline. Amplitude scale is log10 and phase is in degrees For display
purposes only, both diagrams have been smoothed over 5 pixels in delay to reduce
the noise, giving plotted resolution of 0.44 mHz in Doppler frequency and 3.1 µs
in delay. The black line is a parabola with curvature 0.56 s3 on both panels. There
are bright arclets in amplitude that extend along the ridge of this main parabola
to delays > 1 ms. The phase appears much smoother, as discussed in §2.4.1.

Ve↵ , we can eliminate ✓ and obtain

⌧ = af 2
D , where a = De↵�

2/(2cV 2
e↵ cos2 ↵) (2.1)

as the equation of the main parabola. Note that a / �2 regardless of the wavelength

scaling of scattering angle ✓, as confirmed experimentally by [20].

To understand the interferometric observations consider the pulsar as a

point source at a distance Dp from Earth, whose radiation is scattered by an

inhomogeneous region of ionized interstellar medium at a distance Ds from Earth.
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In this thin-screen approximation the phasor due to radiation scattered at a point

x
j

= Ds✓j

in the screen su↵ers a phase delay �
j

due to the scattering plasma

and is received with a total phase delay �
j

(r) = �
j

+ k(x
j

� �r)2/2�Ds where

� = 1 � Ds/Dp and r is the transverse position of the receiving antenna. The

received electric field is the summation of all such scattered components, either

expressed by the Fresnel di↵raction integral [13] or approximated by a summation

over all stationary phase points [38], in strong scattering.

Here we use the stationary phase approximation to obtain the correlation of

the fields between antennas at locations �b/2 and b/2. This defines the visibility

whose Fourier transform in time and frequency can be written as:

Ṽ (⌧, fD,b) =
X

j,k

exp[i(�
j

(�b/2) � �
k

(b/2))]

⇥ µ
j

µ
k

�(fD � fD,jk

)�(⌧ � ⌧
jk

). (2.2)

where:

fD,jk

=
1

�
(✓

j

� ✓
k

) · Ve↵ , (2.3a)

⌧
jk

=
Ds

2 c �
(✓2

j

� ✓2
k

) +


�

j

2⇡⌫
�

�
k

2⇡⌫

�
. (2.3b)

The � functions in equation (2.2) determine how each particular point on the

secondary spectrum is related to a pair of points in the screen. With finite band-

width and observing time the � functions should be replaced by finite narrow sinc

functions. The equation sums over all possible pairs of stationary phase points

in the screen, with µ
j

, µ
k

as the magnifications determined by phase curvature of

each point [38]. In the full Fresnel formulation, the summation becomes a double

two-dimensional integration over the screen with all µ = 1. The plasma delay term

in square brackets in equation (2.3b) involving �
j

is unimportant compared to the

first term when constructing secondary spectra in strong scintillation, but in any

case this term cancels in the astrometry discussed below.

In either formulation equations (2.3a) and (2.3b) connect the points on

the scattering screen to ⌧, fD in the secondary spectrum and are independent of

r. Note that fD can be understood as the di↵erential Doppler shift between two
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waves scattered at di↵ering points on the screen [13] and that the delay ⌧ is the

di↵erential group delay evaluated at the center of the observing band.

Each arclet arises due to the interference of radiation from a given fixed

point on the scattering screen with scattered radiation from ✓⇠0. Examination of

the delay in equation (2.3b) shows that for a strong contribution from fixed ✓
j

the

greatest delay (i.e., arclet apex) will be where ✓
k

goes through zero. The particular

shape of each of the arclets reflects the scattered brightness distribution near core

of the image. Furthermore the fact that the SS amplitude is bright over a narrow

range in delay shows that the points comprising the bright emission centroid region

are extended along a line rather than in a circular halo [13, 38].

The velocity of the scintillation pattern across the line of sight is VISS =

(1��)Vp+�V��Vs, where Vs, V� and Vp are the velocities of the screen, Earth

and pulsar respectively [10]. The scintillation velocity is dominated by the pulsar,

whose proper motion [24] combined with a distance of 643 pc (estimated from the

dispersion measure using the NE2001 Galactic electron distribution model of [12])

gives Vp,↵

= 6.1+15
�15 km s�1, Vp,�

= 156+15
�18 km s�1; note that these velocity errors

do not include the substantial uncertainties in the pulsar distance.

2.4.1 Astrometric Imaging

In single dish observations information on the scattered image is limited

to the power in the secondary spectrum, obtained from Ĩ(⌧, fD). However, the

addition of interferometric observations permits high-precision astrometry to be

performed on each component of the secondary cross spectrum, which isolates the

wavefield due to a single pair of interfering waves. By applying astrometry to each

such pair individually, we can recover an apparent image of the scattered pulsar

radiation.

For a particular pixel from Ṽ (⌧, fD,b) equation (2.2) sums over all pairs of

points that satisfy equations (2.3). However, we now consider the case that only one

pair of points satisfies the latter conditions, a condition that is valid for a linear or

su�ciently anisotropic source. Then the phase of Ṽ is �
j,k

= �
j

(�b/2)��
k

(b/2)
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is

�
j,k

= �
j

� �
k

+
kDs

2�
[✓2

j

� ✓2
k

+
�b

Ds
· (✓

j

+ ✓
k

)] (2.4)

which has terms that are symmetric and anti-symmetric in scattered points j, k.

We cancel the anti-symmetric terms by summing the phase of Ṽ at each point

(fD, ⌧) and its conjugate point at (�fD, �⌧). This eliminates the random screen

phase leaving the symmetric part of the phase as

 
j,k

(b) = �
j,k

+ �
k,j

=
2⇡

�
b · (✓

j

+ ✓
k

) , (2.5)

which neatly encodes the average position of the two scattering points projected

parallel to the baseline b. As we show below, the scattering is indeed highly

anisotropic and the assumption of a single pair of interfering waves for each pixel

is well justified.

In practice the anti-symmetric phases are cancelled by first forming the

secondary cross spectrum, defined as

C(fD, ⌧,b) = Ṽ (fD, ⌧,b)Ṽ (�fD, �⌧,b) , (2.6)

for all non-negative values of ⌧ . Subsequently, the resultant complex phasors are

averaged over small regions (3 pixels in Doppler by 5 in delay) in order to reduce

the e↵ect of noise before the argument is determined:

 (b) = arg (hC(fD, ⌧,b)i) . (2.7)

Here hi denotes the 3 by 5 averaging which properly weights the complex products

before the phase is computed. The result is the geometric phase of the secondary

cross spectrum sampled with a resolution of 0.63 µs in delay and 0.44 mHz in

Doppler. As with any phase measurement the result is modulo 2⇡.

The right panel of Figure 2.1 shows  , the phase of the secondary cross

spectrum, for the baseline from GBT to AO. In contrast to the sharply defined

arclets in the amplitude plot, the phase is relatively smooth, appearing continuous

between the arclets, as might be expected if the fine structure in amplitude comes

from a continuous image with fine structure in brightness. Consequently we can

use astrometry from  to actually map out the scattered brightness distribution
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with remarkable precision. Furthermore we can measure the position angle of the

axis of elongation and estimate both the distance to the region of scattering and

its velocity.

We can use equation (2.5) to find (✓
j

+ ✓
k

) for any point in the secondary

cross spectrum if it is dominated by a single pair (✓
j

,✓
k

) and there are at least

two baselines with su�cient signal-to-noise ratio (S/N). However if we can identify

the apex of an arclet we know ✓
j

or ✓
k

is zero, so we have a unique solution for

the remaining angle. The amplitude plot in Figure 2.1 shows that the apexes

of the identifiable arclets lie near the parabolic curve shown as a line. Hence

we sampled the secondary cross spectrum along that curve to approximate a set

of apex positions even where the arclets are too densely spaced to be identified

individually. We defined the main parabolic arc by the curvature a = 5.577 ⇥

1016/f 2 (s3) for center frequency f Hz in each of our four sub-bands, as shown by

the black line in Figure 2.1.

We selected data with a high enough S/N to estimate ✓ as follows. For each

of the six baselines we found the phasor hC(fD, ⌧,b)i and defined S as the S/N

relative to the root mean square value of |hCi| in a low power (noise dominated)

region near the point being examined. Samples with delays within ±0.6 µs of the

main parabola were selected if S > 4 on the GBT-AO baseline and if S > 3 on the

WB-AO baseline.

For each sample of hCi we first formed a “dirty image” from the 6 baselines

in the same sense as for traditional synthesis imaging [36]. At the dirty image

maximum a two-dimensional Gaussian was fit to determine a position, and both

S and the shape of the Gaussian were used to assign positional uncertainties.

However, since C is a product of two visibilities this method gave too much relative

weight to the high S/N baselines and led to apparent positional errors much smaller

than the scatter of the points from neighbouring samples along the main arc. In

addition there are lobe ambiguities in the synthesized beam, since two of four

antennas (JB and WB) are relatively close to each other and so probe nearly the

same spatial frequencies. The result is a dirty beam that is nearly doubly periodic

with lattice vectors a1 = (59.0, �61.9) mas and a2 = (34.2, 17.8) mas at 322.5 MHz
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Figure 2.2: Map of the astrometric positions of the scattered radiation from
samples along the main parabola in the sub-band at 322.5 MHz plotted as error
bars in colors of green, orange, red & dark red, for amplitude, |C|, increasing by
factors of 10. Right ascension and declination values are relative to the centroid
position as determined by VLBI self-calibration. Note the increase of astrometric
errors with decreasing amplitude |C|. The blue straight line is an unweighted fit to
these points. The black error bars are from the apexes of identified arclets and the
black line is a fit to these points. Samples from the 1 ms feature (negative Doppler
and delay > 0.9 ms) are shown by cyan points for two possible lobe choices. As
discussed in §2.5 the correct lobe position is at the lower right. This is overplotted
with black error bars from the apexes of individual identified arclets near 1 ms.

(scaling linearly with wavelength).

After some investigation we adopted a simpler astrometric method based on

a weighted linear least squares fit of the observed phases,  , using equation (2.5)

(with one of the angles set to zero). Under conditions of high S/N one can show

that the phase error is / 1/
p

S and so we used weights /

p

S. Because the phase

is observed modulo 2⇡ there are ambiguities in position, corresponding to the lobe

ambiguities. Consequently, we used a first guess position as an initial model and

wrapped the phase (e.g., on the trans-Atlantic baselines) to be within ±⇡ of that
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solution before applying the least squares fit. For the points from the main arc

our first guess was at the origin and the results are plotted as error bars (in a pale

color) in Figure 2.2. Points from the main arc form a continuous elongated image

close enough to the origin that the phase ambiguity is not a problem for them.

An empirically determined line passing through arclet apexes was used to

sample the points in the SS associated with the 1 ms feature. The astrometry

of these points, however, forms a distinct group o↵set from the origin in celestial

coordinates, making it di�cult to resolve the phase ambiguities. Accordingly, we

used first guess positions from the two closest synthesized beam lobes which are

roughly equidistant from the origin. The cyan points on the left show the fitted

positions starting from the central lobe; the cyan points on the right show them

starting from a position lobe-shifted by the lattice vector �a2, which corresponds

to the addition of 2⇡ to the phase on the transatlantic baselines. In §2.5 we discuss

the resolution of this ambiguity in favor of the right hand position.

The major conclusion from Figure 2.2 is that the scattered image from the

main arc is remarkably extended along a straight line with very few points more

than 2� from that line. As noted above highly anisotropic scattering was already

inferred by the emptiness of the secondary spectrum (particularly the absence of

power at f
D

⇠ 0, ⌧ > 0) and the many discrete arclets. The apparent flaring of the

points away from the origin is due to the increasing size of the error bars because

the SS amplitude decreases with angle of scattering. We define the straight line

fitted to the points as the “scattering axis”. Note that the plot is not a proper

image of the scattered brightness, since the amplitude |C| must be transformed by

a Jacobian into the brightness. Hence the axial ratio is not easily estimated and

we postpone the discussion of it to a later section.

2.4.2 Arclet Apex Astrometry

The astrometric positions discussed in the preceding section and plotted in

Figure 2.2 are based on the assumption that samples along the main arc correspond

to the apexes of an underlying arclet. However this is not always true, as is obvious

in the 1 ms feature. So we have made an e↵ort to identify all the discrete arclets,
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estimate the apex of each in an optimal way, and then map the phases at each

apex to an angular position. At 322.5 MHz we found 62 well defined arclets (with

apex delays ⌧ > 0.1 ms) of which 7 are in the 1 ms feature. At smaller delays the

arclets are too crowded to identify separately.

We formed a template by averaging all the arclet amplitudes, centered by

their apex, and we fitted a straight line in phase versus fD to the template to

obtain the phase gradient versus fD in the template. We then fitted the amplitude

and phase templates to each arclet using a weighted least squares fit. Hence we

obtained estimates for the delay, Doppler, phase, and amplitude at the apex and

errors in all four parameters. We then estimated ✓ and its error at each apex and

repeated the procedure for all 4 sub-bands.

The astrometric positions and errors of the 62 arclets are plotted in black in

Figure 2.2. The error bars are smaller than from the main arc because the phases

were determined from a weighted average of the phases over the entire arclet. In

addition the scatter should be smaller because they are known to correspond to

interference with the bright centroid component at the origin. However, the lobe

uncertainty in the location of the 7 arclets from the 1 ms feature remains. As we

discuss below, we resolve the ambiguity in favor of the lower right lobe position

marked by the black error bars derived from the 7 apexes. The apexes near the

main arc have positions extending out to 20 mas from the origin and show good

linear alignment with the inner points from the main arc. A straight line fitted

to the inner main arc has a position angle of �25.2 ± 0.5� (east of the declination

axis)2. We use this axis to define ✓k and define ✓? by a 90� clockwise rotation from

it.

We have used three techniques to resolve the lobe ambiguity. The first relies

on the frequency dependence of the positions obtained from each arclet apex. As

discussed below in §2.4.3 we find that the angular positions of the scattered features

that cause the arclets are essentially independent of frequency. Thus we can use

the fact that the correct lobe choice should give a position that is independent

of frequency. We computed the 2 dimensional mean for the 1 ms apexes from

2Here and elsewhere in this paper, reported uncertainties are 68% confidence intervals.
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a weighted average position of its imaged points separately for each of the four

sub-bands. For the lobe position at a negative RA o↵set in Figure 2.2 the mean

position was independent of frequency within the errors of estimation (⇠ 0.1 mas).

All other lobe choices show systematic frequency dependence in their positions in

agreement with that expected for a lobe error.

Confirmation comes from two further tests. The second technique relies

on equation (2.3b) relating delay to the angular o↵set of an arclet apex and is

discussed in §2.5.1. Similarly, the third technique relies on equation (2.3a) for the

Doppler frequency and is discussed in §2.5.2.

2.4.3 Frequency Scaling

[21] found the wavelength scaling of the apex Doppler frequencies of the

four arclets which they identified in pulsar B0834+06 to scale / ��1. Hence using

equation (2.3a) they concluded that the scattering angle responsible for the arclet

was independent of wavelength. We have done a similar analysis on the apex

Doppler frequencies of all the identified arclets in our four sub-bands. In addition

we analyzed the wavelength scaling of the apex delay in the four sub-bands, which

is / ✓2 as in equation (2.3b). We combined the fits to estimate a single scaling

parameter � where ✓ / ��. We estimated � separately for three groups of apexes

and tabulate the values in Table 2.2.

Table 2.2: Wavelength-scaling exponents, �, in the scattering angles (✓ / ��)
estimated from apex positions for three groups of arclets.

Arclet apex group �
⌧ ⇠ 1 ms fD < 0 0.062 ± 0.006
0.1 . ⌧ . 0.4 ms 0.01 ± 0.01
⌧ > 0.4 ms fD > 0 0.019 ± 0.004

The results show that the scattering responsible for each arclet originates

at a location that is essentially independent of wavelength across the 10% range

spanned by the four sub-bands. This is entirely incompatible with the value � =

2, to be expected if the individual arclets came from separate ray paths caused

by refraction due to di↵ering gradients in the column density of electrons. The
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conclusion applies to all arclets in the SS, with the possible exception for the 1 ms

feature whose position scales weakly �0.06. Such a weak scaling might apply if the

arclet were caused by a lens-like concentration of plasma, such as that invoked by

[32] to explain ESEs, but with a transverse extent very much smaller than than

its distance from the direct path.

2.5 Scattering Model

We now develop a model for the distance and velocity for the various fea-

tures in the scattered image.
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Figure 2.3: ✓2 versus delay. Points from the main arc in Figure 2.2 are shown as
blue ⇥ (fD > 0) and � (fD < 0); the apexes of the identified arclets are plotted in
black, except for those from the 1 ms feature which are in red. The straight line
models (✓2 = m⌧ ; see equation(2.8)) were fitted separately to various subsets of
the points to estimate their distances.
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2.5.1 Scattering Distance Estimation

Equation (2.3b) relates delay ⌧ to the angular o↵set ✓ for an arclet apex,

for which the second angular component is at the origin. Thus:

⌧ = (De↵/2c)✓2 (2.8)

where

De↵ = Dp(1 � �)/� (2.9)

In Figure 2.3 we plot on logarithmic scales ✓2 from the astrometry against delay

with the various groups of data from Figure 2.2. Note that there is a bias to ✓2 due

to the uncertainties in right ascension and declination. Since we have estimates of

those uncertainties we subtracted the bias before fitting.

Table 2.3: E↵ective Distances and Velocities estimation from the VLBI
astrometry

Main Parabolic Arc
Frequency D

eff

(pc) V
eff

(km s�1)
MHz Inner Arc ⌧ ⇠ 1ms V

eff k V
eff ?

314.5 1197± 23 1350 ±65 303.3±3.1 -131.9±6.4
322.5 1175 ± 24 1272 ± 29 300.7 ± 3.3 -151.5 ±11
330.5 1195 ± 29 1294 ± 20 303.3 ± 3.7 -161.5 ± 16
338.5 1133 ± 18 1287 ± 24 300.0 ± 2.5 -133.8 ± 5.0
326.5 1175 ± 29 1301 ± 40 301.8 ± 3.2 -144.7 ± 12

Apexes of Identified Arclets
Frequency D

eff

(pc) V
eff

(km s�1)
MHz ⌧ . 0.4 ms ⌧ > 0.4 ms ⌧ ⇠ 1ms V

eff k V
eff ?

314.5 1165 ± 19 1370 ± 43 1064 ± 63 305.9 ± 2.9 -136.1 ± 4.4
322.5 1205 ± 19 1419 ± 67 1132 ± 24 313.4 ± 2.5 -152.9 ± 3.7
330.5 1162 ± 17 1406 ± 39 1180 ± 110 306.8 ± 2.3 -158.4 ± 11
338.5 1139 ± 15 1315 ± 67 1107 ± 17 305.4 ± 2.4 -134.9 ± 1.8
326.5 1168 ± 23 1378 ± 60 1121 ± 59 307.9 ± 3.3 -145.6 ± 8.6

Two separate straight lines through the origin were fitted to the (blue)

points sampled along the main parabola and from the 1 ms feature. The apex

points were also fitted separately for three regions: for apex delays less than 0.4 ms,

delays bigger than 0.4 ms with positive Doppler and with negative Doppler (i.e.,

the 1 ms feature). The fits were weighted proportional to the reciprocal of the
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standard deviation in ✓2. The derived e↵ective distances are given in Table2.3

with their formal 1� errors for all 4 sub-bands.

The simplest model puts all of the scattering in a single relatively thin

region at the same e↵ective distance. Comparing De↵ for the di↵ering regions of

the SS, we find De↵ in the range 1100 to 1400 pc. Since we found no significant

scaling of the apex ✓ with frequency (see §2.4.3), we combine data from all four

sub-bands to create a combined estimate shown as a fifth row in the table. We note

that there is a possible contribution to inconsistencies among the sub-bands from

a partial narrowing of the two outer sub-bands at AO by a front-end bandpass

filter.

The average of the estimates in column 2 from delays less than 0.4 ms from

both the main arc and from the arclet apexes is 1171 ± 23 pc. In column 4 the

1 ms cluster gives 1301±40 pc, which overlaps at ±2� with the value 1121±59 pc

obtained from the 1 ms apexes. This small discrepancy appears in Figure 2.2 as

an o↵set in the centroid of the blue and black points. Since the arclet apexes have

been specifically identified so that one of the ✓ parameters can confidently be set

to zero and since De↵ for the 1 ms apexes is within 1� of those from the main

arc, we conclude that the scattering region responsible the 1 ms feature is located

at the same distance as that causing the main arc. Without the lobe-shift a fit

for De↵ gives values from 1700 to 2600 pc. The large discrepancy in this distance

provides the second confirmation of the lobe-shift for the 1 ms points.

A possibly significant di↵erence is seen between the apexes with positive

Doppler and delays > 0.4 ms in column 3, which give a significantly larger De↵ =

1378 ± 60 pc. Whereas all of the sub-bands give a larger distance there are only

a few identified arclets in each sub-band and they are of relatively low S/N in

all 4 sub-bands so that accurate correction for the noise bias to ✓2 becomes more

critical. Thus the evidence is relatively weak for a di↵erent distance for these

points at large delay and positive Doppler.

We now take De↵ = 1171 pc, combined with the pulsar distance of 640 pc

in equation (2.9) to obtain the fractional scattering distance � = 0.353 ± 0.005.

This is consistent within 2� of the value of 0.29 ± 0.04 obtained by [21] using the
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same pulsar distance but without the advantage of knowing the full geometry of

the scattering screen. However, its true uncertainty is dominated by uncertainty

in the pulsar distance which is estimated from the dispersion measure. Dispersion

measure distances are notoriously unreliable, especially for nearby pulsars and thus

are only accurate to ⇠ 40% [6]; this gives a screen distance range of 250 to 580 pc

from the Earth.

2.5.2 Velocity Estimation
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Figure 2.4: ✓k plotted against the Doppler fD for the sub-band at 322.5 MHz.
Points plotted with cyan ⇥ marks are sampled from the inner main arc in Figure 2.2
and from a line through the 1 ms feature. Black points are from apexes of identified
arclets, except 1 ms apexes which are red.

An independent analysis is provided by equation (2.3a), relating the Doppler

frequency for the arclet apexes to their astrometric position. At each apex the

Doppler frequency can be written as:

fD = ✓·Ve↵/�

= (✓kVe↵k + ✓?Ve↵?)/�. (2.10)
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where

Ve↵ = VISS/� ⇡ Vp(1 � �)/�. (2.11)

The final approximation ignores the velocities of the Earth and of the screen rel-

ative to that of the pulsar. Then the ratio Ve↵/De↵ estimates the pulsar proper

motion independent of its distance and of �. However, here we do not make that

approximation but use the measured proper motion to estimate the velocity of the

scattering screen.

In Figure 2.4 we plot ✓k against fD which would give a straight line whose

slope gives an estimate of �/Ve↵k, providing that the value of ✓?Ve↵? were the same

or negligible for all points. As shown in Figure 2.2 the points fitted by the straight

line have small ✓? scattered about zero. Hence we were able to estimate Ve↵k from

the various groups of points and tabulate the results in Table2.3 excluding all the

points with delays > 0.4 ms.

If we combine inner apex fits with values from the main arc we obtain

Ve↵k = 305 ± 3 km s�1. We now assume the same Ve↵k to apply to the 1 ms

apexes and since these points have a significant measured ✓? we can fit for the

perpendicular velocity also, obtaining Ve↵? = �145 ± 9 km s�1.

In summary the scattering model provides three observable parameters

which we list in Table 2.4. We can express the velocities in RA, Dec and re-

late them to the measured pulsar proper motion velocity Vp,↵

= 6.1 km s�1,

Vp,�

= 156 km s�1. The derived model parameters are also listed in the table.

Equation (2.11) relates the measured e↵ective velocity to the scintillation velocity

VISS which also depends on the transverse projected velocity of the Earth and the

scattering screen. Using the pulsar velocity cited above gives an estimate of the

ISM screen velocity relative to the Sun (⇠ 16 km s�1), which is comparable in

magnitude to other measured interstellar velocities.

The ISM velocity analysis provides the third confirmation of the lobe-shift

applied to the 1 ms astrometry, since in the alternate position Ve↵? is reversed and

could only be reconciled with the pulsar velocity if there were an implausibly high

velocity (> 200 km s�1) for the scattering screen relative to the Sun.
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Table 2.4: Model Parameters for Distance and Velocity, assuming � = 0.353.
Note that the first five quantities are measured; the others are calculated from
these assuming the pulsar distance and velocity as cited in the text.
Model Parameters Value Unit
De↵ 1171 ± 23 pc
Ve↵k 305 ± 3 km s�1

Ve↵? �145 ± 9 km s�1

k Scattering axis �25.2 ± 0.5 deg. east of north
? Scattering axis �115.2 ± 0.5 deg. east of north
Da

s 415 ± 5 pc
V b

sk �16 ± 10 km s�1

Vs? 0.5 ± 10 km s�1

↵ 27 ± 2 deg.
a Assumes Dp = 640 pc; the error in
Ds due to the uncertainty in Dp

is much larger ⇠ 40%
b Including errors from uncertainty in
pulsar distance and proper motion

2.5.3 Estimating the Image Center

In the discussion so far we have assumed that the astrometry is correctly

centered on the emission centroid. However, since the scattered image is highly

anisotropic, the centering done by self-calibration in the primary analysis would

have been more precise in the perpendicular direction than in the parallel direc-

tion. Close examination of the initial versions of the plots as in Figures 2.3 and

2.4 revealed small but significant asymmetries, which allowed us to improve the

centering in the parallel direction.

In the Doppler plot of Figure 2.4 a straight line fit did not pass exactly

through the origin and this fitted o↵set in ✓k was found to be on the order of 0.5 mas

di↵ering slightly between sub-bands. In the delay plot of Figure 2.3 the ✓2 values at

a given delay with positive Doppler frequencies were systematically shifted relative

to those with negative Doppler frequencies. We were able to minimize the �2 for

the straight line by fitting for a positional o↵set in the parallel direction. We

found that in each sub-band the optimum parallel o↵sets were consistent between

the Doppler and delay estimation methods within their errors. An average of these

two o↵sets was consequently applied to the astrometry in each sub-band before the
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Figure 2.5: Cyan error bars are the VLBI astrometry of the apexes of the iden-
tified arclets superimposed from all 4 sub-bands. Red error boxes show the much
finer precision of the back-mapped astrometry, as explained in §2.5.4 and clearly
delineate the highly linear scattering from both the main arc and the 1 ms feature
(at lower right).

analysis described in the two foregoing sections.

2.5.4 Astrometry Mapped Back from the Secondary Spec-

trum

The synthesized beam size of our VLBI array (its basic angular resolution)

was about 35 mas at 327 MHz. In the astrometry shown in Figure 2.2 we obtain

positional accuracies as small as ±0.5 mas near the center of the image due to the

high signal to noise ratio and much larger errors away from the center. However we

can do even better from the apex positions of the arclets in the SS using equations

(2.8) and (2.10), which we will refer to as “back-mapping”. This is possible since

we used the VLBI astrometry to obtain accurate values for the model parameters

De↵ , Ve↵ , and ↵. The equations give the magnitude of ✓ from the delay ⌧ and the
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component ✓
V

parallel to VISS from fD. There is an inherent ambiguity in such a

mapping since it does not determine the sign of the angular coordinate orthogonal

to the velocity. However, we can use the VLBI image to resolve that ambiguity

and show the positions of each apex mapped back into in RA, Dec in Figure 2.5

overplotted for the 4 sub-bands. The mapped astrometry points are plotted as

red error boxes on a background of the error bars of the VBLI positions. The

apex points mapped back in this fashion extend along the same axis as the VLBI

positions but with a narrower spread in ✓? due to their even smaller errors.

With errors �⌧ and �fD in the apex positions we get positional errors �✓ ⇠

c �⌧/(De↵✓) and �✓
V

⇠ �fD�/Ve↵ . With �⌧ ⇠ 1 µs we obtain �✓ ⇠ ✓�1
mas, i.e.,

0.05 mas at ✓mas = 20 mas, which improves on the 0.5 mas from astrometry,

particularly at large scattering angles where the S/N worsens; and with �fD ⇠

1 mHz the resolution �✓
V

⇠ 0.6 mas. The resulting confidence region is shown

by the red box which is narrow in radial ✓ coordinate and wide in the transverse

direction.

The map emphasizes the remarkable anisotropy of the scattering disk and

also shows evidence that the 1 ms feature is also highly extended along a roughly

parallel direction. This is an important aspect that will constrain any physical

model for the scattering.

2.5.5 Scattered Brightness Function

The scattered brightness distribution can be recovered from the secondary

spectrum if the intensity scintillations are weak, or if they are highly anisotropic

[13]. In this case the scintillations are highly anisotropic and we can make one-

dimensional, strip integrated brightness distributions, B1(✓k), by strip integrating

the two dimensional distribution over ✓?. Then we have

B1(✓1)B1(✓2) = A(⌧, fD)|J | (2.12)

where ⌧ = (✓2
1 � ✓2

2)De↵/2c, and fD = (✓1 � ✓2)Ve↵ cos↵/� and the Jacobian

|J | = fDDe↵/c. Then by sampling A(⌧, fD) along the main arc where ✓2 = 0, we

can estimate B1(✓). This estimate is plotted in Figure 6 without the 1 ms feature,



40

which cannot be represented on this plot since it is not on the main parabola.
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Figure 2.6: Left:Scattered brightness against ✓k obtained for points along the
main arc via the back-mapped astrometry in §2.5.4, averaged from all four sub-
bands (blue). The individual peaks are as narrow as 0.1 mas as shown in the
expanded view in the right panel. The three overplotted theoretical curves (red)
are for a one-dimensional Kolmogorov model. The middle curve was fitted to the
observations over the range shown in green. The other two curves have the same
total flux density for the pulsar but are wider and narrower as discussed in the
text.

If the scattering comes from homogeneous anisotropic Kolmogorov turbu-

lence then the strip integrated brightness distribution is the Fourier transform

of the one-dimensional correlation function of the electric field, B1(✓k) = FT

[exp(�(sk/s0)5/3)]. We have plotted three such models over the observations in

Figure 2.6, each with a di↵erent value of s0, the coherence scale of the electric

field. The middle model fits the data near the origin (s0 ⇠ 104 km) and the other

two give a rough estimate of the range of s0 necessary to match the measurements.

They correspond to changing the root mean square (RMS) electron density by a

factor of 2 (wider curve) or 0.5 (narrower curve). One can see in the expanded

view on the right that near ✓k = -10 mas there is a change in the RMS electron

density by a factor of 4 in a very small distance.

The finest structure has an angular scale of about 0.1 mas, which corre-

sponds to 0.05 AU. This plot can also be made using the VLBI astrometric ✓k.

In this case the large scale structure is the same but the small scale structures

seen clearly in Figure 2.6 are smoothed out by the larger error bars in the VLBI
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astrometry.

2.5.6 Axial Ratio

While we have clear evidence for highly anisotropic scattering, it is di�-

cult to estimate the axial ratio R, which is usually defined by a contour at, say,

half power in the two-dimensional scattered brightness distribution. Estimates of

the width in ✓k can be made from the one-dimensional brightness in Figure 2.6.

However, the width at the same level in ✓? is harder to estimate, since we have no

information on brightness versus ✓?. As an alternative, we can define an apparent

axial ratio Rap from the scatter of the points in Figure 2.2 independent of their

brightness. Here we define Rap as the ratio of the RMS width in ✓? to that in ✓k.

The observed scatter in ✓? will of course be broadened by the astrometric errors,

so that only an upper bound can be found on ✓? due to interstellar scattering.

We apply these ideas to Figure 2.7, which shows the astrometry from the

main arc as a scatter plot of ✓? against ✓k superimposed from all four sub-bands.

The black error bars show ✓? averaged into 0.5 mas bins in ✓k where the length

of the bar is the standard deviation in each average. Taken as a group the black

points from the inner ±5 mas are consistent with a Gaussian distribution with zero

mean and 0.38 mas RMS; there are no points more than ±2� from zero and their

error bars, which have not been corrected for the measurement error, have a mean

value of 0.3 mas. Thus the true scatter in ✓? is smaller than these errors, implying

an intrinsic perpendicular RMS width less than ⇠ 0.3 mas. Taking the half width

at half power in ✓k to be 3 mas from Figure 2.6 gives a lower bound on the axial

ratio R
⇠

> 10. Similar estimates can be made from the ratios of the parallel to

the perpendicular RMS widths of the apex astrometry from both the VLBI and

back-mapping methods. These yield Rap
⇠

> 27 and Rap
⇠

> 20, respectively.

The scattering axis is neither parallel nor perpendicular to the Galactic

plane. However, according to the Virginia Tech Spectral-Line Survey3 the pulsar

lies ⇠ 1� from a 5� long bright H↵ filament at a position angle within about 10�

of our scattering axis. Although there is a rough agreement in position angle we

3See http://www.phys.vt.edu/halpha/ for more information about this survey.
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have no other evidence to support an association with our 30 mas long filament.

2.6 Physical Models of the Scattering

While our main focus is the presentation of the remarkable results found

from the observations, we now briefly consider what physical structures could be

responsible for the scattering. Following previous analyses of the ISS phenomena,

we assume that the basic cause is scattering by random (presumably turbulent)

structures in the plasma density. The scale of such turbulence must extend down

to well below the di↵ractive scale, ⇠ �/2⇡✓k. To obtain scattering angles of 25 mas

requires microstructure of the order of 1000 km. However, the turbulence is in-

homogeneous over scales of 0.1 to 10 AU as mentioned above and we must also

account for the highly elongated shape of the main scattered image.
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Figure 2.7: Astrometry referred to axes parallel and perpendicular to the main
scattering axis. Pale color superimposes scatter plots from the main arc in all four
sub-bands. The black points show the average ✓? from bins 0.5 mas wide in ✓k with
vertical bars giving the error in the average. The bars have not been corrected for
the astrometric errors. Note that only the inner portion of the primary scattering
disk where high S/N points are located is included in this plot.

First we ask whether the peaks in our scattered image, due to the arclets,

could be the equivalent of “speckles”. Discrete arclets are visible in the simulated

secondary spectrum in Figure 11 of Cordes et al. (2006), who computed the SS
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for a realization of a layer with a Kolmogorov spectrum and an axial ratio 4:1

parallel to the simulated velocity. That figure shows very many fine arclets with

apexes centered on a pronounced forward parabola. In independent realizations the

arclet apexes appear at random locations, showing that they are the equivalent of

speckles in a snapshot scattered image through a turbulent scattering layer. Thus

they do not map to deterministic structures in the layer.

In contrast the discrete nature of the arclets and their sparser distribution

in our observation suggests deflection by discrete structures, possibly similar to

those responsible for extreme scattering events (ESEs). The two basic models

proposed for ESEs have been an enhancement in ne that causes a diverging “lens”

[32] or an enhancement in plasma turbulence that causes extra scattering [18].

The result that the angle of arrival from the arclets is essentially independent

of frequency implies that the waves are deflected at a fixed transverse distance

from the pulsar line-of-sight by either refraction or scattering. This reinforces the

conclusion that specific isolated structures in the line of sight are responsible. The

observed frequency independence constrains the angular size of a lens, based on

the law of plasma refraction, to be a small fraction of the angle of deflection which

we observe up to ±20 mas. Similarly the size of a scattering center would have to

be much smaller than this angle of deflection.

The very high apparent axial ratio we observe strongly suggests that an

ordered magnetic field determines the geometry of the scattering. The lack of

any magneto-ionic signature (i.e., the exact match between the dynamic spectra

in right and left circular polarizations) implies that the radio frequency phase

imposed by the plasma is simply proportional to the column density of the local

electron density ne. We expect that plasma structures will be more tightly confined

transverse to a magnetic field than parallel to it, i.e., the density irregularities will

be field-aligned as they are in the solar corona. Since we expect such structures to

scatter preferentially in their narrow dimension, our initial idea is that the major

axis of the angular scattering would be orthogonal to the mean magnetic field.

Thus one scenario for the main image is a roughly parallel set of filaments (or

sheets), controlled by a magnetic field at right angles to the axis of scattering and
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extending at least over the projected length of the image (⇠ 15 AU). Waves passing

through a filament are scattered by 10-30 mas due to a locally enhanced column

density of electrons (and presumably higher plasma turbulence) which would be

seen as a single arclet. We call this first scenario the orthogonal geometry. The

axial ratio R would then correspond to the axial ratio of the micro-turbulence (i.e.,

at the di↵ractive scale).

There is however, an alternative scenario in which a dense filament of plasma

is confined by the local magnetic field, which is parallel to the axis of scattering. We

call this the parallel geometry. Such a filament must have denser knots of micro-

turbulence, which are responsible for the discrete arclets. The flux ropes seen in

the solar wind are a possible plasma structure (see [5] and references therein).

The denser knots could scatter isotropically and so the filament would not have

to be located exactly in front of the pulsar. In such a case the major axis of

the scattered image (about 3 mas) would be determined by di↵ractive scattering

caused by microstructures of the order of 3000 km in scale, but the minor axis

would be set by the thickness of the filament. Such scattering has been observed

in the solar corona [16] and discussed in the context of interstellar scattering by

[11]. We assume that the thickness of such a filament would be of the order of

the size of a “knot”, on the order of 0.05 AU or 0.1 mas. Thus the filament is at

least 16 AU long, about 0.05 AU in diameter, but not straight. The perpendicular

RMS angle of 0.4 mas would correspond to an RMS irregularity in the filament

of 0.2 AU or 4 times its thickness. Because the scattering is caused by a very

thin structure in this model, the electron density in the filament would have to be

considerably higher than normally expected (about 5 cm�3) to cause the observed

angular scattering.

In the parallel filament model the 1 ms feature is readily explained as a

separate o↵set filament of about the same density which is approximately parallel

to the main filament. However, in the orthogonal geometry the observer would not

detect the anisotropic scattering from a concentration of filaments nearly parallel

to those causing the main arc. Thus the basic simplicity of this geometry, that

assumes the scattering is so anisotropic that the angles of scattering are transverse
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to the long spatial axis, must be augmented by an independent process of scattering

or refraction to explain the 1 ms feature. A possible process is a localized plasma

structure in that part of the sight line that refracts the scattered waves towards

the observer. In this case the angular position of the 1 ms feature should have a

�2 wavelength dependence, which is inconsistent with that observed as shown in

§2.4.3.

In either geometry the existence of many sub-AU sized discrete structures

passing within 15 AU of the line of sight to our pulsar raises the more general

question of their distribution in interstellar space. The fact that the structures re-

sponsible lie at a common distance suggests that the pulsar happens to lie behind

a single larger region consisting a cluster of many filaments of plasma or a single

filament with very compact condensations (knots). Further the fact that [21] ob-

served similar arclets 22 months earlier suggests a region bigger than 40 AU. Two

ideas that seem possible are a shock with multiple nearly parallel subshocks seems

and the flux rope idea already mentioned. The number density of such regions can

only be crudely constrained by the sparse statistical sampling of pulsars with sim-

ilar multiple arclets. We hope to distinguish between these two basic geometries

by detailed modeling of the propagation.

2.7 Conclusions

This paper describes a novel VLBI technique resulting in a two-dimensional

image of the scattering screen of pulsar B0834+06. The baseband data that were

recorded allowed high resolution dynamic spectra to be produced. The secondary

spectra produced with the two-hour dynamic spectra could allow sharply defined

arclets to be identified with delays as high as 1 ms.

The scattered image was developed by astrometrically mapping points cho-

sen from the secondary spectrum to bright points in the sky plane. These points

were clustered in two clearly defined groups: a primary scattering disk which is

elongated and inclined 27±2� to the pulsar proper motion direction and a second,

non-colinear, feature corresponding to the 1 ms feature of the secondary spectrum.
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Diagnostic measurements place the two features at essentially the same distance,

65% of the way to the pulsar. The two-dimensional distribution of points in the

scattered image allows both transverse components of the e↵ective velocity to be

determined via relationships connecting the Doppler frequency with location in

the image.

The discrete feature at 1 ms delay contains about 4% of the total received

power. This feature is expected to to be visible only for a few weeks during which

time its delay should drift as the pulsar moves; the impact on timing this pulsar at

⇠ 327 MHz due to such a feature is a time variable wander with magnitude ⇠ 40 µs.

This should come as a caution to those aiming to perform precision pulsar timing

at low frequencies on pulsars that exhibit the extreme forms of scintillation that

are characteristic of B0834+06. Further, pulsars with sub-microsecond structure

may experience apparent pulse profile evolution yielding additional complications

in their timing.

We were able to estimate the e↵ective scintillation velocity vector, which

depends on a distance-weigthed sum of the velocities of the pulsar, the Earth and

the scattering plasma. By using the published proper motion we estimated the

velocity of the scattering plasma to be 16 ± 10 km s�1approximately parallel to

the scattering axis. Since the errors in this interesting result are dominated by the

uncertainty in the pulsar proper motion, we have undertaken a new set of VLBI

measurements to improve its precision.

The interpretation of ISS in pulsars has often assumed isotropy in the scat-

tering. The extremely anisotropic scattering found here would substantially alter

any quantitative modeling of the plasma were it to be a common feature in other

regions on the interstellar medium. A description of the underlying plasma physics

must await a resolution of the two possible geometries mentioned in the previous

section, but the results and the method provide an exciting new glimpse of the

ionized ISM at scales of 0.1 to 10 AU.

Chapter 2, in full, is a reprint of the material as it appears in ApJ 2010. W.

F. Brisken, J.-P. Macquart, J. J. Gao, B. J. Rickett, W. A. Coles, A. T. Deller, S.

J. Tingay, C. J. West, 2010. The dissertation author was the primary investigator
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and author of this paper.



Chapter 3

2-D core image model with point

o↵set source

There are two main models introduced in this chapter to reconstruct core

brightness image from reversed sub-arcs. We will refer to these as the instanta-

neous model and the ensemble-averaging model. In this chapter, two models are

represented in details, both simulation and observation data analysis are done.

Comparison of those two models’ performances are also discussed, and perpen-

dicular width of core image is also estimated. We also estimate the perpendicular

width of core image using forward method and compare it with the previous result.

3.1 Reconstruct core image from reversed sub-

arcs using the instantaneous model

The algorithm developed in this section was not used in the final interpo-

lation, detailed discussion is in section 3.2.3.

The previous brightness image we achieved is based on the astrometric imag-

ing technique. We successfully determine the positions of o↵set point sources by

finding apexes of reversed sub-arcs, but the brightness of each single point hasn’t

been estimated. Also, we can’t find apex of individual sub-arc when it’s close to the

48
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origin since they are overlapped with each other, so the center part is still invisible.

In this chapter, we developed a new technique to reconstruct the entire 2-D

brightness distribution of the core from reversed sub-arcs. This idea comes from

the weak scattering situation where the primary arc is interference between a single

central bright point and an extended source. Detailed theory of brightness image

recovery from secondary cross spectra will be presented. The simulation which

is used to confirm the theory is also discussed. The simulation result convinces

us that the center brightness image can be re-constructed from reversed sub-arcs

with little distortion. Then this technique is applied to the observed data and we

achieved some satisfying result.

Secondary cross spectrum can be mainly divided into two parts: primary

component and reversed sub-arcs. Primary component is due to the interference

between the central brightness image and itself. It’s hard to recover the center

brightness image from primary component because in general each point of Sec-

ondary cross spectrum comes from many pairs of scattered waves. Reversed sub-

arcs are due to the interference between the central brightness image and a bright

o↵set source (Fig 3.1 shows the Brightness model, the center brightness image is

marked as CenterSource and a bright o↵set source is marked as PointSource, V
eff

direction is also marked ). If we assume that o↵set source is a point source, then

each pixel of a reversed sub-arcs maps mainly from two angular positions in the

core brightness, and we can use the amplitude and phase information of that pixel

to recover the brightness intensity in those two angular positions. Furthermore,

under condition that there are multiple o↵set sources, each a point source, then

the corresponding reversed sub-arcs are identical because they are derived from

the same core image. If these reversed sub-arcs do not overlap significantly then

making use of all of them can improve the signal to noise ratio in the recovered core

image. In the rest of this section, we will focus on the theory of position mapping

and brightness intensity reconstruction from reversed sub-arcs to core brightness

image.
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Figure 3.1: Brightness image input, the red line shows the e↵ective velocity
direction, the yellow ellipse shows the regions which has four ambiguities, which
will be explained later. All unit in angle is mas

The secondary cross spectrum is defined as,

C(f
D

, ⌧, b) = Ṽ (f
D

, ⌧, b)Ṽ (�f
D

, �⌧, b) (3.1)

Ṽ (f
D

, ⌧, b) is the complex two-dimensional Fourier transform of the complex visi-

bility spectrum V (t, ⌫, b). Each point in secondary cross spectrum is due to inter-

ference between pairs of scattered waves at ✓1 and ✓2. Di↵erential delay (⌧) and

di↵erential Doppler frequency (f
D

) are

f
D

=
(✓1 � ✓2) · V

eff

�
(3.2)

⌧ =
(✓2

1 � ✓2
2)Deff

2c
(3.3)
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where

V
eff

= ((1 � s)V
P

+ sV
E

� V
screen

)/s (3.4)

D
eff

= L(1 � s)/s = z
e

/s2 (3.5)

Those terms are explained earlier in Chapter 2, just as a reminder, VP ,

V
E

and V
screen

are velocity of pulsar, Earth and scattering screen. L is the

distance between Pulsar and the Earth, s is the ratio of distance between pulsar and

scattering screen and distance between pulsar and the Earth. Fourier transform of

complex visibility can be expressed in integral form as

Ṽ (b, ⌧, f
D

) =

ZZZZ
g+(✓1, ⌫o

)g+⇤(✓2, ⌫o

) exp[�jk(b1 · ✓1 � b2 · ✓2)]

�(⌧ 0
� ⌧)�(f 0

D

� f
D

)d2✓1 d2✓2 (3.6)

where g+(✓
,

⌫
o

) is complex angular field spectrum at central frequency ⌫
o

with

bandwidth B << ⌫
o

. g+(✓
,

⌫
o

) doesn’t change between two telescopes, it’s the

same wherever the receiver is. In the rest part of this note, central frequency ⌫
o

is

omitted. We define

g+(✓) , "(✓) exp[j�(✓)] (3.7)

h(b,✓) , g+(✓) exp[�jkb · ✓] (3.8)

= "(✓) exp[j�(✓) � jkb · ✓]

where "(✓) and �(✓) represent brightness amplitude and random phase respec-

tively, and h(b,✓) includes baseline phase. Eq(3.6) becomes

Ṽ (b, ⌧, f
D

) =

ZZZZ
h(b1,✓1)h

⇤(b2,✓2)�(⌧
0
� ⌧)�(f 0

D

� f
D

)d2✓1 d2✓2 (3.9)

And scattered brightness distribution is

B(✓) = |g+(✓)|2 = |h(b1,✓)|2 = "2(✓) (3.10)
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Brightness image can be divided into two components

h1(✓) , h1c

(✓) + h1p

(✓) (3.11a)

h2(✓) , h2c

(✓) + h2p

(✓) (3.11b)

’c’ stands for center part and ’p’ stands for o↵set part. ’1’ stands for receiver 1 and

’2’ stands for receiver 2. There are four terms after putting Equation 3.11a and

3.11b into Equation 3.9. The two self-terms are related with primary component,

while the two cross-terms are related with reversed sub-arc. The self-terms will be

ignored since we are particularly interested in reversed sub-arc.

Ṽ (b, ⌧, f
D

) =

ZZZZ
{h1c

(✓1)h
⇤
2p

(✓2)) + h⇤
2c

(✓2)h1p

(✓1)}

�(⌧ 0
� ⌧)�(f 0

D

� f
D

)d✓1 d✓2

=

ZZZZ
h1c

(✓1)h
⇤
2p

(✓2)�(⌧
0
� ⌧)�(f 0

D

� f
D

)d✓1 d✓2

| {z }
Ṽ1(b,⌧,f

D

)

+

ZZZZ
h⇤

2c

(✓2)h1p

(✓1)�(⌧
0
� ⌧)�(f 0

D

� f
D

)d✓1 d✓2

| {z }
Ṽ2(b,⌧,f

D

)

(3.12)

The first term

Ṽ1(b, ⌧, fD

) =

ZZZZ
h1c

(✓1k
V

, ✓1?
V

)h⇤
2p

(✓2k
V

, ✓2?
V

)

�(⌧ 0
� ⌧)�(f 0

D

� f
D

)d✓1k
V

d✓1?
V

d✓2k
V

d✓2?
V

(3.13)

Represent Eq 3.1 in k

V

and ?

V

coordinate. k

V

means its direction is parallel to

e↵ective velocity, and V
eff

= (V
eff

, 0) = (V
x

, V
y

).

⌧ 0 = ((✓2
1k

V

+ ✓2
1?

V

) � (✓2
2k

V

+ ✓2
2?

V

))
D

eff

2c
(3.14)

f 0
D

= (✓1k
V

� ✓2k
V

)
V

eff

�
(3.15)

By assuming ✓2k
V

and ✓2?
V

are known and solving variables ✓1k
V

and ✓1?
V

,

we get
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✓1k
V

= f 0
D

�

V
eff

+ ✓2k
V

(3.16)

✓1?
V

= ±

s

⌧ 0 2c

D
eff

� f 02
D

�2

V
eff

2 � 2f 0
D

�

V
eff

✓2k
V

+ ✓2
2?

V

(3.17)

The Jacobian of the transform is given by

d✓1k
V

d✓1?
V

=
c�

D
eff

V
eff

r
⌧ 0 2c

D
eff

� f 02
D

�

2

V
eff

2 � 2f 0
D

�

V
eff

✓2k
V

+ ✓2
2?

V

d⌧ 0df 0
D

(3.18)

After Applying the Jacobian factor, replacing ✓1k
V

and ✓1?
V

, removing �() function,

and replacing h⇤
2p

(✓2k
V

, ✓2?
V

) with �(✓2k
V

�✓
ok

V

)�(✓2?
V

�✓
o?

V

)h⇤
2p

(✓
ok

V

, ✓
o?

V

) since

those are point source in assumption, Then the Ṽ1(b, ⌧, fD

) becomes

Ṽ1(b, ⌧, fD

) = {h1c

(✓
f

+ ✓
ok

V

, U1) + h1c

(✓
f

+ ✓
ok

V

, �U1}
C0

U1
h⇤

2p

(✓
ok

V

, ✓
o?

V

) (3.19)

where

U1 ,
s

⌧
2c

D
eff

� f 2
D

�2

V
eff

2 � 2f
D

�

V
eff

✓
ok

V

+ ✓2
o?

V

(3.20)

✓
f

, f
D

�

V
eff

(3.21)

C0 , 2c�

D
eff

V
eff

(3.22)

Equation 3.19 shows that every point of Ṽ1(b, ⌧, fD

) comes from the one

pair of interferences which are symmetric to the velocity axis. U1 represents the

distance of those two interferences to the velocity axis, it’s also proportional to the

inverse of Jacobian factor. ✓
f

is the angular shift in k

V

which determines those

two interferences” position in k

V

.

Apply the same procedure to Ṽ2(b, ⌧, fD

) and use the same definition of ⌧ 0

and f 0
D

, we get
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And
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where

U2 ,
s

�⌧
2c

D
eff

� f 2
D

�2

V
eff

2 + 2f
D

�

V
eff

✓
ok

V

+ ✓2
o?

V

(3.26)

Hence, reversed sub-arc can be expressed in k

V

and ?

V

coordinates as below
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(3.27)

This is the most fundamental equation in this section, it shows that, based on the

point o↵set model, every point of the Fourier transform of complex visibility comes

from two pairs of interferences.

3.1.1 Position mapping

According to the mathematical derivation above, each (⌧, f
D

) in a reversed

sub-arc maps to four possible points in the center brightness image. Both U1 and

U2 must be real, which makes a closed region where two pairs of solutions can only

co-exist inside that region, and anywhere outside that region have two solutions.

Each pair is symmetric to the velocity line which is marked as the red straight
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line in Figure 3.1. The yellow ellipse in Figure 3.1 demonstrates the four-solutions

region, if the part of the image we want to recover is outside of that yellow ellipse

region, then we only need to consider the two solutions. In our case, we only re-

cover the core image and there is only a small overlapping between the core image

and the yellow ellipse. As the o↵set sources go further away from the center part,

there will be less and less overlapping. Thus we only consider the last two terms

in Eq(3.27) for Ṽ (f
D

, ⌧,b) and the first two terms in Eq(3.27) for Ṽ (�f
D

, �⌧,b).

In k

V

and ?

V

coordinate, Eq(3.27) becomes
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D
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1c
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where

✓
↵

= (�✓
f

+ ✓
ok

V

, U2) (3.29a)
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If it’s in Dec-RA coordinate, a simple conversion is needed, then the posi-

tions are

✓
↵

= ((Q1Vx

+ Q2Vy

), (Q1Vx

� Q2Vy

)) (3.30a)

✓
�
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56

3.1.2 Brightness intensity reconstruction

In the last section, position mapping from the Fourier transform of visibility

spectrum to brightness Image has been discussed. In this section, more discussion

will be made on the relationship between the amplitude phase of C(f
D

, ⌧, b) and

the brightness intensity B(✓).

In each baseline, two receivers receive (but they couldn’t because no tele-

scope has such a fine angular resolution to resolve the brightness image) the same

angular spectrum g+(✓), but di↵erent baseline phase kb · ✓.

In receiver 1

8
>><

>>:

h1c

(✓
↵

) = "
↵

ej�

↵ point ↵ in center brightness image

h1c

(✓
�

) = "
�

ej�

� point � in center brightness image

h1p

(✓0) = "
p

ej�

p o↵set point source

In receiver 2

8
>><

>>:

h2c

(✓
↵

) = "
↵

ej�

↵

�j�

b↵ point ↵ in center brightness image

h2c

(✓
�

) = "
�

ej�

�

�j�

b� point � in center brightness image

h2p

(✓0) = "
p

ej�

p

�j�

bp o↵set point source

The unknown amplitudes we wish to estimate are "
↵

"
�

, the random phases

which we wish to remove are �
↵

�
�

�
p

. �
b↵

(, kb · ✓
↵

), �
b�

(, kb · ✓
�

) is baseline

phase which are already known. �
bp

can be directly achieved from the phase on

an apex of reversed sub-arc.

Ṽ (b, ⌧, f
D

) = C0{"↵

ej�

↵

�j�

b↵ + "
�

ej�

�

�j�

b�

}

⇤"
p

ej�

p/U2 (3.31)

Ṽ (b, �⌧, �f
D

) = C0{"↵

ej�

↵ + "
�

ej�

�

}("
p

ej�

p

�j�

bp)⇤/U2 (3.32)
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Where constant C0 is irrelevant to f
D

and ⌧ . Normalizing (C0"p

= 1) and multi-

plying Ṽ (b, ⌧, f
D

) and Ṽ (b, �⌧, �f
D

), yields

C(b, ⌧, f
D

) = Ṽ (b, ⌧, f
D

)Ṽ (b, �⌧, �f
D

)

= ej�

p

{"
↵

ej�

↵

�j�

b↵ + "
�

ej�

�

�j�

b�

}

⇤

⇥{"
↵

ej�

↵ + "
�

ej�

�

}("
p

ej�

p

�j�

bp)⇤/U2
2

= ej�

bp

{"2
↵

ej�

b↵ + "2
�

ej�

b� + "
↵

"
�

(ej�

b↵ej�

�

�j�

↵ + ej�

b�ej�

↵

�j�

�)}/U2
2 (3.33)

In order to remove random phase, more than one baseline is required. Define

the other baseline phase as �0
b↵

, kb0
· ✓

↵

, �0
b�

, kb0
· ✓

�

and �0
bp

, kb0
· ✓0

0.

C(b, ⌧, f
D

) = "
p

2ej�

bp("
↵

e�j(�
↵

��

b↵

) + "
�

e�j(�
�

��

b�

))

("
↵

ej�

↵ + "
�

ej�

�)/U2
2 (3.34a)

C(b0, ⌧, f
D

) = "0
p

2ej�

0
bp("

↵

e�j(�
↵

��

0
b↵

) + "
�

e�j(�
�

��

0
b�

))

("
↵

ej�

↵ + "
�

ej�

�)/U2
2 (3.34b)

and define

G
↵

, ("
↵

ej�

↵ + "
�

ej�

�)"
↵

e�j�

↵ = ↵ + j� (3.35a)

G
�

, ("
↵

ej�

↵ + "
�

ej�

�)"
�

e�j�

� = � � j� (3.35b)

G
↵

and G
�

share the same imaginary part with opposite sign. By the

definition of G
↵

and G
�

, Brightness intensity at ✓
↵

and ✓
�

can be expressed as

B(✓
↵

) = "2
↵

=
↵2 + �2

↵ + �
(3.36a)

B(✓
�

) = "2
�

=
�2 + �2

↵ + �
(3.36b)

Multiple sub-arcs can be used at once by solving the normal equations below

to get better estimate
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0

BBBBBBBB@
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cos�
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� sin�
b↵

+ sin�
b�

sin�
b↵

sin�
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cos�
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� cos�
b�

cos�0
b↵

cos�0
b�

� sin�0
b↵

+ sin�0
b�

sin�0
b↵
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b�

cos�0
b↵

� cos�0
b�

...
...

...

1

CCCCCCCCA

0

BB@

↵

�

�

1

CCA =

0

BBBBBBBB@

R(C(b, ⌧, f
D

)e�j�

bp)

I(C(b, ⌧, f
D

)e�j�

bp)

R(C(b0, ⌧, f
D

)e�j�

0
bp)

I(C(b0, ⌧, f
D

)e�j�

0
bp)

...

1

CCCCCCCCA

Q2
2

Use equation above with multiple baselines, random phase (�
↵

, �
�

) can be

completely removed with secondary cross spectra provided by multiple baselines

(three telescopes at least).

3.1.3 Simulation

Simulation has been used to test and confirm the scattered image recon-

struction algorithm. We first create the interferometer visibility function using a

Kolmogorov model with 3:1 axis ratio, and take the Fourier transform to get the

input brightness image. Figure 3.2 shows the simulated input core image with

an o↵set bright point marked. Then we use this input image to create the sec-

ondary spectrum. The reversed sub-arc associated with the o↵set bright point is

simulated and plotted in Figure 3.3. Random phase in the scattering screen and

baseline phase are included. Two baselines are simulated to remove the random

phase. Figure 3.4 shows the reconstructed core image which is achieved from the

reversed sub-arcs of two baselines according to the algorithm above. It is accu-

rately recovered with a small gap along the velocity vector. The velocity vector in

brightness domain maps from the upper-edge of reversed sub-arc, where the factor

U2 becomes zero, which makes the normal equation un-resolvable and causes the

distortion. This simulation confirms that the algorithm is successful.
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Figure 3.2: Input core image for simulation, y-axis is ✓
Dec

[-20mas 20mas] and
x-axis is ✓

RA

[-20mas 20mas]

Figure 3.3: Reversed sub-arc from input core image of baseline 1, y-axis is de-
lay[0ms 0.15ms], x-axis is Doppler frequency[-40mHz 5mHz], the upper panel is
amplitude in log10, and the lower panel is phase in radian

3.1.4 Apply to pulsar B0834+06 observation data and dis-

cussion

We applied this algorithm to the same observation data set which is dis-

cussed in Chapter 2. We choose a reversed sub-arc with high S/N from the sec-

ondary cross spectra and plot this sub-arc’s amplitude and phase in Figure 3.5

and Figure 3.6 with GBT-AO (left panel) and Westbork-AO (right panel) base-

lines respectively. This specific dataset includes all 4 sub-channels which provides

higher resolution in secondary cross spectrum. The area between those two black

parabolic arc is used to converted into the core brightness image.
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Figure 3.4: Reconstructed core image from simulated secondary cross spectrum,
y-axis is ✓

Dec

[-20mas 20mas] and x-axis is ✓
RA

[-20mas 20mas], the gap along the
velocity vector is because its Jacobian factor U2 becomes zero at velocity axis which
makes the normal equation un-resolvable and causes the distortion

There are a few parameters that we need to estimate.

1. Normalization factor: This is the most important parameter, which is the

normalization ratio between two di↵erent baseline, due to the di↵erent gain

of antenna in each baseline. Here we choose 1.65 which comes from the

average of ratio of secondary auto spectra between two di↵erent baselines.

2. sub-arc’s apex position: or the o↵set point source’s position. According to

the algorithm and simulation, each sub-arc has a really sharp parabolic upper

edge with curvature bc.

bc =
�2D

eff

2cV
eff

2 (3.37)

and when we do strip integration along the forward arc’s apex, the curvature

is di↵erent

c =
�2D

eff

2cV
eff

2 cos2 ↵
(3.38)

where ↵ is the angle between the velocity and the main axis of the primary

linear feature. Sub-arc’s apex lies on the top of parabolic edge. In Figure 3.5,

the sub-arc we chose doesn’t have a sharp edge as seen in simulation, which

makes it really hard to estimate the sub-arc’s apex position, especially the
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delay of it. Here we choose the top of the black sub-arc in Figure 3.5 as a

possible position of this sub-arc.

3. Phase on apex: A small fluctuation on the baseline phase of the o↵set point

would shift the value the entire brightness. We can calculate the phase if

based on the o↵set point source’s position. In order to avoid the estimate

error propagation on apex position, we estimate it by averaging the phase

around the apex position in secondary cross spectrum.

mHz

m
s

 

 

−30 −25 −20 −15 −10 −5
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

8

8.5

9

9.5

10

10.5

11

11.5

12

mHz

m
s

 

 

−30 −25 −20 −15 −10 −5
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

8

8.5

9

9.5

10

10.5

11

11.5

12

Figure 3.5: Amplitude of reversed sub-arc 1, GBT-AO baseline (left) and
Westbork-AO baseline (right)

Figure 3.7 shows the reconstructed core image using one baseline (GBT-AO

baseline). Figure 3.8 shows the reconstructed core image using multiple baselines

(both GBT-AO baseline and Westbork-AO baseline). Both of them show a gap

along the vertical axis which is coincidence with the velocity vector is due to the

finite size of pixel along the upper-edge of the sub-arc. Each pair of points (✓
↵

,

✓
�

) are symmetric to the velocity vector, and this technique is supposed to dis-

tinguish the brightness of those two points. However for multiple baseline case, it
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Figure 3.6: Phase of reversed sub-arc 1, GBT-AO baseline (left) and Westbork-
AO baseline (right)

doesn’t distinguish brightness around -2 mas along Dec axis. Both images show

some brightness structure which is roughly parallel with the linear structure we

found in previous chapter. Those bright area further from the origin doesn’t mean

the brightness in that area is high, it’s due to the error introduced by low S/N in

the tail region of reversed sub-arc.

We also observe that there is a null in the center of the reconstructed core

image which disagrees with the hump at the center of Brightness estimated from

1-D linear model. We found similar results using data from other sub-arcs. After

considering various assumptions in the reconstruction, we have concluded that the

explanation is that the o↵set source might be slightly extended as we discuss in

the next section.
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Figure 3.7: Reconstructed core image using one baseline (GBT-AO)

3.2 Reconstruct core image from reversed sub-

arcs using ensemble-averaging model

Section 3.1 presents a method to reconstruct core image based on Equa-

tion 3.1 which means that the secondary cross spectrum is the instantaneous prod-

uct of Ṽ (f
D

, ⌧, b) and Ṽ (�f
D

, �⌧, b). Our observation data is recorded in the time

span of 1 hour, it’s reasonable that ensemble-averaging should be considered.

3.2.1 Theory

In this case, Equation 3.1 becomes

C(f
D

, ⌧, b) = hṼ (f
D

, ⌧, b)Ṽ (�f
D

, �⌧, b)i (3.39)

Use Eq 3.6, Secondary Cross Spectrum is
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Figure 3.8: Reconstructed core image using two baselines (GBT-AO and
Westbork-AO)

C(f
D

, ⌧, b) =

ZZZZ
hg+(✓1)g

+⇤(✓2)g
+(✓3)g

+⇤(✓4)i

exp[�jk(b1 · (✓1 + ✓3) � b2 · (✓2 + ✓4))]�(⌧
0
� ⌧)�(⌧ 00 + ⌧)

�(f 0
D

� f
D

)�(f 00
D

+ f
D

)d2✓1 d2✓2d
2✓3 d2✓4 (3.40)

Where

f 0
D

=
(✓1 � ✓2) · V

eff

�
(3.41)

f 00
D

=
(✓3 � ✓4) · V

eff

�
(3.42)

⌧ 0 =
(✓2

1 � ✓2
2)Deff

2c
(3.43)

⌧ 00 =
(✓2

3 � ✓2
4)Deff

2c
(3.44)
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Assume g+(✓1) g+⇤(✓2) g+(✓3) g+⇤(✓4) are zero mean, gaussian random

complex variables, with both real and imaginary part independent and of the

same variances.

hg+(✓1)g
+⇤(✓2)g

+(✓3)g
+⇤(✓4)i = hg+(✓1)g

+⇤(✓2)ihg
+(✓3)g

+⇤(✓4)i +

hg+(✓1)g
+(✓3)ihg

+⇤(✓2)g
+⇤(✓4)i + hg+(✓1)g

+⇤(✓4)ihg
+⇤(✓2)g

+(✓3)i (3.45)

For any complex random variable g = x + jy, if x and y are independent with the

same variances �2, then

hgg⇤
i = hx2

i + hy2
i = 2�2 (3.46)

hggi = hx2
i � hy2

i + 2jhxihyi = 0 (3.47)

If g+(✓) is complex stationary random process (gaussian white noise)

hg+(✓1)g
+⇤(✓2)i = hg+(✓1)g

+⇤(✓1)i�
2(✓1 � ✓2) = B(✓1)�

2(✓1 � ✓2) (3.48)

Then Equation 3.45 becomes

hg+(✓1)g
+⇤(✓2)g

+(✓3)g
+⇤(✓4)i = B(✓1)B(✓3)�

2(✓1 � ✓2)�
2(✓3 � ✓4)

+B(✓1)B(✓3)�
2(✓1 � ✓4)�

2(✓3 � ✓2) (3.49)

Secondary cross spectrum can be shown as

C(f
D

, ⌧, b) =

ZZ
B(✓1)B(✓3) exp[�jkb · (✓1 + ✓3)]d

2✓1 d2✓3�
2(⌧)�2(f

D

)

+

ZZZZ
B(✓1)B(✓3) exp[�jk(b1 · (✓1 + ✓3) � b2 · (✓2 + ✓4))]�

2(✓1 � ✓4)

�2(✓3 � ✓2)�(⌧
0
� ⌧)�(⌧ 00 + ⌧)�(f 0

D

� f
D

)�(f 00
D

+ f
D

)d2✓1 d2✓2d
2✓3 d2✓4

(3.50)

RR
B(✓1)B(✓3)exp[�jkb · (✓1 + ✓3)]d2✓1 d2✓3 is a constant S0. When ✓1 = ✓4,

✓2 = ✓3 makes f 0
D

= �f 00
D

, ⌧ 0 = �⌧ 00, and define b = b1 � b2.

C(f
D

, ⌧) = S0�
2(⌧)�2(f

D

) +

ZZ
B(✓1)B(✓2)

exp[�jkb · (✓1 + ✓2)]�
2(⌧ 0

� ⌧)�2(f 0
D

� f
D

)d2✓1d
2✓2 (3.51)
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The first term is a DC term which is only at origin. If we ignore this term,

the secondary spectrum can be expressed as a form similar to the fundamental

Equation 8 of [13], except two di↵erences. Firstly, Equation 3.51 has phase term

while Equation 8 of [13] doesn’t. This is not an inconsistency since Equation 3.51

is secondary cross spectrum while the other is secondary auto spectrum. Secondly,

Equation 3.51 has �2(⌧ 0
� ⌧)�2(f 0

D

� f
D

) while the other has �(⌧ 0
� ⌧)�(f 0

D

�

f
D

). This is an inconsistency which goes back to the formulation of the visibility

from the scattered image in Equation 3.6, where a � function is introduced to

constrain the angles so that they give a specific Doppler frequency and delay. That

� function becomes �2 after we form Equation 3.40 using Equation 3.6 and two same

� functions become �2 in Equation 3.51. �2 leads to infinity if we integrate �2 out in

Equation 3.58. While we have not yet resolved this inconsistency mathematically,

we replace �2 by � which is then consistent with Equation 8 of [13] when the

baseline goes to zero.

C(f
D

, ⌧, b) =

ZZ
B(✓1)B(✓2) exp[�jkb · (✓1 + ✓2)]�(⌧

0
� ⌧)�(f 0

D

� f
D

)d2✓1d
2✓2

(3.52)

It’s actually a four-dimensional integral.

C(f
D

, ⌧, b) =

ZZZZ
B(✓1k

V

, ✓1?
V

)B(✓2k
V

, ✓2?
V

) exp[�jkb · (✓1 + ✓2)]
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� ⌧)�(f 0

D

� f
D
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V

d✓2k
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(3.53)

Where

⌧ 0 = ((✓2
1k

V

+ ✓2
1?

V

) � (✓2
2k

V

+ ✓2
2?

V

))
D

eff
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f 0
D

= (✓1k
V

� ✓2k
V

)
V

eff

�

k

V

is parallel to e↵ective velocity, and V
eff

= (V
eff

, 0). By solving ✓2k
V

and ✓2?
V

,

we get



67

✓2k
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= �f 0
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(3.55)
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(3.56)

And Jacobian transform is
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(3.57)

After integrating out the �() functions it becomes a double integral
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D

, ⌧, b) =
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(3.58)

Similar to the previous section, o↵set source is a point source

B(✓1k
V

, ✓1?
V

) exp[�jk(bk
V
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After Integrating Equation 3.58

C(f
D

, ⌧, b) = {B(�✓
f

+ ✓0k
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, +U2)e
�j�

b↵ + B(�✓
f

+ ✓0k
V

, �U2)e
�j�

b�

}
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)e�j�
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(3.60)

where
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= k(�bk
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✓
f

+ b?
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U2) (3.61)

�
b�

= k(�bk
V

✓
f

� b?
V

U2) (3.62)

�
bp

= k(bk
V

✓0k
V

+ b?
V

✓0?
V

) (3.63)

Compare this equation with Equation 3.27 in the previous section. They

are similar, but Equation 3.27 is the Fourier transform of visibility function, and

Equation 3.60 is the secondary cross spectrum. After ensemble averaging, there is

only one pair of interferences, and there is no random phase noise either. In this

case, only one baseline is enough to resolve B(✓
f

, +U1) and B(✓
f

, �U1), and there

is no approximation of losing another pair of interferences. The solution for this

complex function is

 
cos�
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cos�
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sin�
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sin�
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! 
B1

B2

!
=

 
R(C(b, ⌧, f

D

)e�j�

bp)

I(C(b, ⌧, f
D

)e�j�

bp)

!
U2

3.2.2 Apply to observation data and discussion

We again apply this algorithm above to the same observed data set. The

same sensitive parameters are used in this realization as the instantaneous model.

Figure 3.9 shows the reconstructed core image from the same sub-arc using en-

semble averaging model with GBT-AO baseline and Figure 3.10 shows the recon-

structed core image with Westbork-AO baseline

Reconstructed core image using ensemble averaging model is not similar

with Figure 3.8 which is based on instantaneous model. Although the vertical gap

is still in the brightness image using ensemble averaging, the null in the center

disappears. There are still a few small holes inside the core image but it’s not as

bad as the instantaneous case.
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Figure 3.9: Reconstructed core image from sub-arc 1, ensemble averaging model,
GBT-AO baseline

Although averaging seems have better brightness core image result, It’s still

hard to tell which model is more close to the reality, just based on the reconstructed

core image from those two models. There is some parameter which might not be

set up correctly, such as the antenna gain ratio between di↵erent baseline, and core

image reconstruction using ensemble averaging doesn’t need this parameter since

it only needs one baseline.

We rotate the core image to its main axis and sum both along parallel direc-

tion and perpendicular direction, to get its 1-D brightness in both directions, and

they are shown in Figure 3.11, in log scale(log10). The upper panel shows the 1-d

brightness in parallel direction B(✓k) and the lower panel shows the 1-d brightness

in perpendicular direction B(✓?). Here k and ? are relative to the image axis, not

velocity.
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Figure 3.10: Reconstructed core image from sub-arc 1, ensemble averaging model,
Westbork-AO baseline

In order to compare with our previous result, we plot both the directly-

sampled 1-d brightness from secondary spectrum which is shown in Chapter2 and

this new 1-d B(✓k) in Figure 3.12, in blue and red respectively. They match very

precisely, especially in the center region between -5 has to 3 mas. It’s a strong

proof that that this reconstructed core brightness image shown in Figure 3.9 and

Figure 3.10 are reasonable estimation.

This is our first time to obtain the perpendicular information of the bright-

ness image. There is a small dent at origin next to two little bumps in B(✓?) plot

at roughly 1 mas and -1 mas. We believe that dent is due to the null shown in the

2-D reconstructed core image. It a↵ects B(✓?) much more than B(✓k) because the

null is more vertical to the perpendicular direction and it only distorts the center

part of B(✓k), while it distorts almost evenly everywhere in B(✓k). B(✓k) is more

homogeneous, and the distribution is very exponential since it is in log scale and

it shows linear distribution in the plot.
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Figure 3.11: 1-d brightness along the parallel direction (upper) and perpendicular
direction (lower)

We fit a 1-D kolmogorov model to both B(✓k) and B(✓?) using equation

below,

B(✓) =
C

(1 + ( ✓�✓0
✓

p

)2)
8
6

(3.64)

This equation is based on 2-D kolmogorov model integrated over one axis,

that’s why the index is 8/6 instead of 11/6. When fitting B(✓k), we didn’t include

the bump at 6 mas, while When fitting B(✓?), we didn’t include the dent in the

center. Both constant C, o↵set ✓0 and characteristic width ✓
p

are fitted. The fit-

ting result is over plotted in red.

For B(✓k), there is no o↵set and ✓
p

⇠ 3.85 mas. For B(✓?), o↵set ✓0 ⇠

0.3 mas and ✓
p

⇠ 1.3 mas, which is much bigger than the intrinsic perpendicular

RMS width we estimated in Chapter2 (less than 0.3 mas).

The estimated axial ratio is ⇠ 3
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mated from sampling along the forward arcs in secondary spectrum, the red dots
are estimated from integrating the reconstructed 2-D core image obtained using
ensemble-averaging model

The rotated core image is also plotted in Figure 3.13 and we plot the half-

power contour on it using 2-D kolmogorov model. The reason we chose 2-D kol-

mogorov model is that it’s widely used to model the homogeneous scattering in

the ISM.

3.2.3 Relationship between Instantaneous model and en-

semble averaging model

Sections 3.1 and 3.2 present di↵erent theoretical relations for the secondary

cross spectrum C(f
D

, ⌧, b) in Equations 3.33 and 3.60, respectively. These lead to

reconstruction algorithms that di↵er in detail. Here we compare them and con-

clude that the ensemble average method is more appropriate.

Our analysis in paper [2] discusses Ṽ (f
D

, ⌧, b) as a summation over prod-

ucts of pairs of waves j & k, each one having its ‘screen phase’, which contribute to
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Figure 3.13: The rotated core image with half-power contour (red)

Ṽ (f
D

, ⌧, b) via their di↵erence �
j

� �
k

. The Secondary cross spectrum C(f
D

, ⌧, b)

should then involve products of 4 waves summed over pairs j,k and l,m. If you

take the ensemble average of the 4-way product (and assume independent com-

plex gaussian random fields) the delta functions enforce the ✓
j

= ✓
l

and ✓
k

= ✓
m

condition, so there are no contributions to C(f
D

, ⌧, b) from the cross interference

between wave pairs j,k or between l,m. In other words the secondary cross spec-

trum C(f
D

, ⌧, b) comes down to a sum of the products of the Brightness from ✓
j

and the Brightness from ✓
k

. There are no contributions from the cross interference

of fields from ✓
j

and ✓
k

. This justifies omitting the 3rd and 4th terms in Equa-

tion 3.33 and makes the instantaneous model the same as the ensemble average

expression, except their Jacobian terms. In our observation data, the dynamic

spectrum is recorded in the time span of 1 hour, it makes more sense to consider

ensemble-average in our case.

Two models’ Jacobian terms are di↵erent. For instantaneous model, we

work with density function for the electric field components (✏), and C(f
D

, ⌧, b) =

Ṽ (f
D

, ⌧, b)Ṽ (�f
D

, �⌧, b). Both V (f
D

, ⌧, b) and V (�f
D

, �⌧, b) have a Jacobian

term U2, which makes the total Jacobian U2
2 . In contrast, for ensemble-averaging
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model, C(f
D

, ⌧, b) is expressed in terms of the scattered brightness density func-

tion, Jacobian term U2 is only used once. Instantaneous model’s Jacobian term

is square of ensemble-averaging model’s, and Jacobian term tends to lower the

brightness estimation when it’s closer to the velocity axis, that’s why there is a big

hole in the center of the reconstructed core image using instantaneous model. This

inconsistency in the Jacobians comes from the same reason as the inconsistency in

� that we address in section 3.2.1. Both of those inconsistency goes back to the

formulation of the visibility from the scattered image in Equation 3.6. This is a

more fundamental problem, Equation 3.6 is introduced without explicit justifica-

tion and all the di�culties go back to that point. We still haven’t resolved this

inconsistency mathematically, and this is definitely the most important part of the

further work.

3.3 The size of the o↵set scattering point

It’s probably true that the size of the o↵set bright source is not small enough

to be treated as point source and we need to estimate its size and revise the im-

age reconstruction algorithm to take this size e↵ect into account. It’s easy to tell

that this sub-arc doesn’t have as sharp upper-edge as the simulated sub-arc in

Figure 3.3, which is a sign that it’s not point source. Some simulation work has

been done to analyze this size e↵ect by using simulation.

We first create an input brightness image with the same core image as the

previous simulation, and the extended o↵set source with one tenth of the core im-

age in size. Then we use this input image to create the secondary spectrum and

reconstruct the core image from the secondary spectrum using the same algorithm.

Figure 3.14 shows the reconstructed core image. We observe that there is a null in

the center which splits the core image into two parts, just like the one being ob-

served in the last section. We change the size of the o↵set source and do the same

procedure, and the null becomes wider as the size of the o↵set source increases.
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Figure 3.14: Reconstructed core image from extended o↵set source

For better comparison, we plot the smoothed reconstructed core image using

ensemble averaging in Figure 3.15. Both of them show some null which looks very

similar as the way that the simulated core image splits.
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Figure 3.15: Left:Smoothed reconstructed core image from sub-arc 1, ensem-
ble averaging model, GBT-AO baseline. Right: Same analysis applied to the
Westerbork-AO baseline.
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3.4 Estimation of perpendicular width of core

image

In the previous section, we used reversed sub-arc to reconstruct the core

image and estimated the 1-d brightness distribution in both parallel and perpen-

dicular direction. The reversed sub-arc is due to the cross-interference between

the o↵set bright source and the core image, if we assume the o↵set source is a

point source we can reconstruct the core image in a backward way, which means

from secondary spectrum domain to the angular domain, but the o↵set source isn’t

a perfect point and its size splits the core image and distorts the 1-d brightness

distribution along perpendicular direction.

Can we make use of the center part of the secondary spectrum to estimate

the 2-D brightness core image? The center part is due to the self-interference of

the core image and there is no way to reconstruct core image in the backward way

like we did to the reversed sub-arc, since each point in secondary spectrum in that

region comes from multiple possible self-interference paris. But it is possible for

us to generate secondary spectrum using a given 2D brightness image in a forward

way.

In this section, we use forward method to generate the center part of sec-

ondary spectrum, compare it with the observation, and fit the width of the core

image, to estimate the axial ratio.

3.4.1 Theory

This theory is based on ensemble averaging model. The idea is similar to

the 2D core image reconstruction, but instead of solving complex Equation 3.60

and mapping brightness and position back from secondary spectrum, we generate

the secondary spectrum layer by layer in a forward way, each layer is due to the

’cross-interferences’ of one point (✓0k, ✓0?) in 2D brightness with the rest of it.

We convert Equation 3.60 to a summation form.
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C(f
D

, ⌧, b) =
X

✓0k,✓0?

{B(✓
f

, +U1)e
�j�

b↵ + B(✓
f

, �U1)e
�j�

b�

}

B(✓0k, ✓0?)e�j�

bp

C0

U1
(3.65)

In each secondary spectrum layer, each pixel (f
D

, ⌧) can be mapped to one

pair of interference positions (✓
f

, +U1) and (✓
f

, �U1) in angular domain, given

(✓0k, ✓0?), and use Equation 3.60 to get one secondary spectrum layer, given

the known 2-D brightness distribution. Summarize all the layers with di↵erent

(✓0k, ✓0?), we can get the entire secondary spectrum.

3.4.2 Estimate perpendicular width using forward fitting

We first generate the input 2-D brightness distribution model as below

B(✓k, ✓?) = B(✓k)
1

(1 + ( ✓?
✓

p

)2)11/6
(3.66)

or

B(✓k, ✓?) = B(✓k)e
�(

✓?
✓

p

)2
(3.67)

Where B(✓k) is the directly-sampled brightness distribution that we estimated in

Chapter 2. The other term could be approximated 1-D kolmogorov distribution in

Equation 3.66 , or gaussian distribution as in Equation 3.67. We assume brightness

distribution in parallel direction and perpendicular direction are independent with

each other, since two dimensional gaussian distribution can be separated into two

1-d gaussian distribution, we only use model described in Equation 3.67 in this sec-

tion. We set up a threshold to eliminate layers with small B(✓0k, ✓0?), to decrease

the computation. Non-linear least mean squared fitting is used to fit ✓
p

. Since this

is based on the self-interference between the core image, the fitting requires a lot

of computation, but we only deal with the center part of the secondary spectrum

so it’s still acceptable.
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The same observation data set of B0834+06 is used here. We used three

data set which have high SNR: two secondary auto spectrum observed at GBT and

AO and secondary cross spectrum observed in GBT-AO baseline. Only a small re-

gion close to the origin is used for fitting since we only consider the self-interference

of the core image. We chose the region between 0 to 0.1 ms in delay and -10 to

10 mHz in Doppler. We fit ✓
p

by minimizing the sum of squared of normalized

residuals between the data and the model. The normalization factor we used is

the modeled brightness so those residuals with higher SNR has bigger weights.

The fitting results for two secondary auto spectrum and secondary cross

spectrum are very similar. They are all very close to 1.25 mas. Although we

didn’t use the the kolmogorov model here so it’s easy to compare with the perpen-

dicular width we estimated in the previous section, we can still convert both ✓
p

to

their half-power half-width by using ✓
h

= 0.8326✓
p

for gaussian model and 0.8257✓
p

for kolmogorov model, we get half-power half-width ✓
h

= 1.04 mas for forward fit-

ting which matches the conclusion about the half-power half-width (⇠ 1.07 mas)

of the reconstructed core image using kolmogorov model from reversed sub-arc in

the last section.

Figure 3.16 presents the modeled 2D brightness image with ✓
p

= 1.25 mas.

The color dynamic range is set to be the same as the reconstructed core image

from reversed sub-arc in Figure 3.9 for easy comparison. Figure 3.17 shows the

amplitude of modeled (left) and observed (right) secondary cross spectrum.

3.4.3 Summary

In this section, we fit the perpendicular width of the brightness image by

using the center part of the secondary spectrum, and get an approximated half-

power half-width (⇠ 1 mas) which matches the result in the previous section. It

provides another strong proof that the reconstructed 2-D core image is believable.

(⇠ 1 mas) half-power half-width is still very narrow comparing to the brightness

distribution along the parallel direction.
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Figure 3.16: 2-D brightness image model using fitted ✓
p

Figure 3.17: Amplitude of modeled (left) and observed (right) secondary cross
spectrum

3.5 Conclusions

In chapter 2, we used astrometric imaging technique to determine the posi-

tions of o↵set point sources by finding apexes of reversed sub-arcs, but the center

part, or called core image, is still invisible. In this chapter, We have developed

a new technique to reconstruct the 2-D scattered brightness core image of pulsar
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B0834+06.

We find that each point of a reversed sub-arc maps mostly from two points

in core image which are symmetric to the e↵ective velocity vector, and we invented

an image recovering algorithm to reconstruct the brightness distribution of the core

image from the entire sub-arc, both using instantaneous model and ensemble aver-

aging model. Simulation shows that this technique can e↵ectively reconstruct the

scattered image with only a narrow gap along the velocity. We have applied it to

the observed data and get a good estimation of constructed image from a chosen

sub-arcs with high SNR. 1-dimensional brightness distribution along both parallel

and perpendicular direction are estimated too, the brightness distribution along

parallel direction matched the directly-sampled brightness we achieved in Chapter

2, which provides a strong proof that the way we reconstructed the core image

is correct. Half-power half-width in the perpendicular direction is estimated too

(⇠ 1 mas). We also use forward method to estimate perpendicular width of the

core image, and get a similar half-power half-width.

There are some existing problems we need to solve in the future. The

technique is based on the assumption that each o↵set bright source is infinitely

small. Both data analysis and simulation result shows that some bright points

must be extended and we must modify the analysis to take this size e↵ect into

account. Carefully applying this technique to multiple sub-arcs will improve the

S/N of the reconstructed image as well.



Chapter 4

2-D image reconstruction based

on electric field representation

In the previous chapters, we work on pulsar’s secondary cross spectra, which

is the 2-D Fourier transform of complex dynamic cross spectra. Pulsar dynamic

spectra itself exhibit high-visibility fringes arising from interference between scat-

tered waves, and [41] invented a method to decompose pulsar dynamic spectra into

their constituent scattered waves components - amplitude |µ̃
j

|, Doppler shift f
Dj

and delay ⌧
j

. There is a direct relationship between (f
Dj

, ⌧
j

) and the apparent po-

sitions ✓ of the scattered waves, based on the assumption that the scattering occurs

in a single thin screen. We invented a method to convert the plot of |µ̃
j

(f
D

, ⌧)|2 into

a scattered brightness B(✓). Since this data bypass the e↵ect of the size of o↵set

source, it becomes extremely interesting in the 2-D scattered image reconstruction

project. The dataset we used in this chapter is from the same pulsar (B0834+06)

and at the similar frequency (321MHz instead of 326MHz) as the chapter 2, but it

was observed on 2004 Jan 05 with the Arecibo Radio Telescope, while the dataset

in chapter 2 was observed on 2005 Nov 12 with four largest telescopes in the VLBI

network.

81
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4.1 Electric field representation of pulsar inten-

sity spectra

Walker and Stinebring [41] defined the total electric field as U(⌫, t), the

total electric field intensity (or called dynamic spectra) as I = U⇤(⌫, t)U(⌫, t), and

each of the discrete scattered waves as µ̃
j

, which is a complex number, and the

relationship between electric field and scattered waves is defined as

U(⌫, t) =
X

j

µ̃
j

e2⇡i(⌫⌧

j

+f

Dj

t) (4.1)

In this equation, [41] states that the expansion sums components waves scattered

with delay ⌧
j

and Doppler shift f
Dj

over a narrow range of t and ⌫, and they also

assume that µ̃
j

are independent of ⌫ and t. The 2-D Fourier transform of U(⌫, t)

Ũ(f
D

, ⌧) =

ZZ
U(⌫, t)e�2⇡i(⌫⌧+f

D

t)d⌫dt (4.2)

it connects to their scattered wave expansion

Ũ(f
D

, ⌧) =
X

j

µ̃
j

�(⌧ � ⌧
j

)�(f
D

� f
Dj

) (4.3)

Beware that Ũ(f
D

, ⌧) is not secondary spectra Ĩ(�f
D

, �⌧) which is dis-

cussed in the other chapters. Ũ(f
D

, ⌧) is the Fourier transform of the total electric

field U(⌫, t) while Ĩ2(�f
D

, �⌧) is from the Fourier transform of the electric field

intensity I(⌫, t). I(⌫, t) is observable while U(⌫, t) is not, and the phenomenon of

scintillation arcs was recognized in the secondary spectrum Ĩ(�f
D

, �⌧). The ar-

guments of Ĩ2 are the di↵erential delay �⌧ ( �⌧ = ⌧
j

�⌧
k

) and di↵erential Doppler

shift �f
D

( �f
D

= f
Dj

� f
Dk

)between pairs of scattered waves. To simply the

notation, � sign is usually ignored in other discussion (Ĩ2(fD

, ⌧)). In sections 4.2,

the connection between secondary spectra Ĩ2(�f
D

, �⌧) and the total electric filed

Ũ(f
D

, ⌧) is discussed in details, so is the connection between the brightness distri-

bution B(✓) and Ũ(f
D

, ⌧)
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In order to represent the electric field U(⌫, t) from the observed pulsar

intensity spectra I(⌫, t), [41] takes an iterative approach to determine Ũ(f
D

, ⌧),

given I(⌫, t). In this model, the individual scattered waves that make up Ũ(f
D

, ⌧)

are completely specified by their delay ⌧
j

, Doppler shift f
Dj

, amplitude and phase

µ̃
j

. Given a good model of electric field U0(⌫, t) they compute the corresponding

intensity patternI0(⌫, t). It wont match the observed Intensity exactly, and they

improve the model by investigating the residual R0(⌫, t) between the model and

the data. Assuming the existing model is a good one (|�U0| << |U0|) and �U0 is

dominated by a single scattered wave, they found a simple form

�Ũ0(fD

, ⌧) = FFT (R0(⌫, t)U0(⌫, t)) (4.4)

This result shows the direct relationship between the intensity residual

R0(⌫, t) and �Ũ0(fD

, ⌧) given a good electric field model U0(⌫, t). They start with

a good model U0(⌫, t), and keep updating �Ũ0(fD

, ⌧) by using the equation above,

take the Inverse Fourier transform to get better model of U0(⌫, t), update the in-

tensity residual R0(⌫, t) , and repeat the procedure again and again, until they find

a good estimate of of �Ũ0(fD

, ⌧).

Figure 4.1 shows the observed dynamic spectrum I(⌫, t) [21] on the left-

upper panel, and its secondary spectrum Ĩ2(�f
D

, �⌧) on the left-down panel.

Those reversed sub-arcs on the positive doppler side were observed to move (with

pulsar proper motion) over 20 days. This is the same pulsar at di↵erent time.

The right side of Figure 4.1 are calculated from the modeled 8720 decomposed

scattered wave components. There is no visible di↵erence between the observation

and model which means that those 8720 scattered wave components are good es-

timation. Figure 4.2 shows the plot of |µ̃
j

|

2 versus Doppler shift and delay, the

amplitudes |µ̃
j

|

2 of the 8720 scattered wave components was identified by the de-

composition algorithm. There are no reversed sub-arc shown in Figure 4.2, because

it is not secondary spectrum, it shows the scattered wave’s amplitude at each each

Doppler and delay. There are four individual blobs on the right side of the plot,

at (15 mHz, 150 µs) , (18 mHz, 170 µs) , (22 mHz, 250 µs) and (25 mHz, 270
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µs) respectively, which corresponds to those four sub-arcs in the same position of

Figure 4.1.

Figure 4.1: original dynamic spectrum (left-upper) of B0834+06 and its cal-
culated secondary spectrum (left-down), the right side are calculated from the
modeled 8720 decomposed scattered wave components [41]



85

doppler (mHz)

d
e
la

y 
(µ

s)

 

 

−30 −20 −10 0 10 20 30

0

50

100

150

200

250

300

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Figure 4.2: amplitudes of the 8720 scattered wave components

4.2 Converting electric field to brightness

Here we demonstrate that the coe�cients |µ̃
j

|

2 are directly related to the

scattered brightness B(✓
j

) and so we can use the amplitude obtained from the Fig-

ure 4.2 and map the position from (f
Dj

, ⌧
j

) to ✓
j

to re-construct the 2-D brightness

distribution B(✓).

To compute the secondary spectrum Ĩ2(fD

, ⌧), we first do the 2-D Fourier

transform of I(⌫, t).

Ĩ(f
D

, ⌧) =

ZZ
U⇤(⌫, t)U(⌫, t)e�2⇡i(⌫⌧+f

D

t)d⌫dt (4.5)

Making use of the preceding equations we get

Ĩ(f
D

, ⌧) =
X

j

X

k

µ̃
j

µ̃
k

⇤�(⌧ � ⌧
j

+ ⌧
k

)�(f
D

� f
Dj

+ f
Dk

) (4.6)

Hence the secondary spectra I2(fD

, ⌧) = Ĩ(f
D

, ⌧)Ĩ⇤(f
D

, ⌧) becomes
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Ĩ2(fD

, ⌧) =
X

j

X

k

X

l

X

m

µ̃
j

µ̃
k

⇤µ̃
l

⇤µ̃
m

�(⌧ � ⌧
j

+ ⌧
k

)�(⌧ � ⌧
l

+ ⌧
m

)

�(f
D

� f
Dj

+ f
Dk

)�(f
D

� f
Dl

+ f
Dm

) (4.7)

The delta functions only contribute where j=l and k=m then it reduces to a double

summation

Ĩ2(fD

, ⌧) =
X

j

X

k

µ̃
j

2µ̃
k

2�(⌧ � ⌧
j

+ ⌧
k

)�(f
D

� f
Dj

+ f
Dk

) (4.8)

By comparing this equation with the Equation 8 of [13], which expresses the sec-

ondary spectrum as a double integral over pairs of scattering angles

Ĩ2(fD

, ⌧) =

ZZ
B(✓1)B(✓2)d

2✓1d
2✓2�(⌧ � ⌧1 + ⌧2)�(fD

� f
D1 + f

D2)) (4.9)

We conclude that

|µ̃
j

|

2
/ B(✓

j

)d2✓
j

(4.10)

The Jacobian transform factor between d2✓
j

(or d✓kd✓?) and d⌧df
D

can be derived

from the relationship of (⌧, f
D

) and (✓k, ✓?)

f
D

=
✓

j

· V
eff

�
=
✓kVeff k + ✓?V

eff ?

�
(4.11)

⌧ =
✓2

j

D
eff

2c
=

(✓2
k + ✓2

?)D
eff

2c
(4.12)

Before solving the Jacobian transform, we can first determine the position map-

ping from (⌧, f
D

) to (✓k, ✓?) by solving the two equations above, and we get two

solutions:

✓1 = (✓k, ✓?) = (
f

D

�

V
eff

,
p

U) (4.13)

✓2 = (✓k, ✓?) = (
f

D

�

V
eff

, �
p

U) (4.14)

U =
⌧2c

D
eff

�

f 2
D

�2

V
eff

2 (4.15)
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Where
p

U is also the Jacobian factor.

In general the relationship involves the sum of brightness terms at ✓1 and ✓2.

There is no baseline information in the data, so we could not solve the ambiguities

of the two angular positions (✓1 or ✓2). In our we can use the extra information

from the VLBA modeling to determine, for that particular(⌧, f
D

) , which ✓ should

be used. The Jacobian transform is then

d✓kd✓? /

d⌧df
D

U1
(4.16)

So we can get

B(✓k, ✓?) / (
|µ̃

j

|

2

d⌧df
D

)U1 (4.17)

Where

|µ̃
j

|

2

d⌧df
D

is basically the electric field amplitude in unit area, and ignore the constant, we

can represent the form as

B(✓k, ✓?) = |µ̃
j

(f
D

, ⌧)|2

s
⌧2c

D
eff

�

f 2
D

�2

V
eff

2 (4.18)

The data themselves can carry information about the relative Doppler-

shifts, delays and phases amongst the various wave components, the choice of origin

is arbitrary. In practice, the origin in time and frequency actually corresponds to

the component which contains the largest flux. If there is only a single scattered

term then it will be the smallest delay. However, if there are multiple scattered

terms, the brightest of these might well not be the path with the smallest delay. In

order to compensate this factor, a small shift (⌧0, fD0) should be applied to (⌧, f
D

).

Then some equations are changed:
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✓1 = (✓k, ✓?) = (
(f

D

� f
D0)�

V
eff

,
p

U) (4.19)

✓2 = (✓k, ✓?) = (
(f

D

� f
D0)�

V
eff

, �
p

U) (4.20)

U =
(⌧ � ⌧0)2c

D
eff

�

(f
D

� f
D0)2�2

V
eff

2 (4.21)

In order to make sure that
p

U is real, mapping to non-negative U is valid.

4.3 Apply this algorithm to the electric field rep-

resentation results

[41] achieved good estimate of the amplitudes |µ̃
j

|

2 of the 8720 scattered

wave components. We apply our algorithm to convert |µ̃
j

|

2 into scattered bright-

ness image.

According to the equations above, the position mapping depends on D
eff

,

V
eff

, f
D0 and ⌧0. Because the data is from the same pulsar you adopted the values

of D
eff

and V
eff

from chapter 2. We carefully adjust f
D0 and ⌧0 so that U is non-

negative for all f
D

and ⌧ and chose (f
D0 = 0.7mHz, ⌧0 = �1.5µs).

Both Figure 4.3 and Figure 4.4 show the reconstructed image. The di↵er-

ence between those two is that Figure 4.4 is uniformly sampled in (⌧, f
D

) domain

while Figure 4.4 is uniformly sampled in angular domain.

In Figure 4.5, each position in angular domain is mapped to a particular

position (⌧, f
D

). In order to estimate|µ̃
j

|

2, bi-linear interpolation is used. If (⌧, f
D

)

is very close to recovery boundary, the interpolation does not work very well which

makes the brightness value of the very center in Figure 4.4 lower than it should

be. In Figure 4.3, no interpolation is involved, some pixels in the very center are
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Figure 4.3: Brightness distribution B(✓), uniformly sampled in (⌧, f
D

) domain
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Figure 4.4: Brightness distribution B(✓), uniformly sampled in angular domain
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empty which we believe is a better estimate, the bottom line is it doesnt give us

the false information of the core image.

Since there is no phase information in |µ̃
j

(f
D

, ⌧)|2, we can’t solve the am-

biguity. But it’s the same pulsar as the one in chapter 2, just observed 22 months

earlier. The estimated angle of the primary linear feature from chapter 2 matches

the reconstructed primary feature in negative Dec direction. Assuming that the

ISM properties are similar in those two observation, we believe that the the bright-

ness image in the positive Dec should be flipped with axis of the parallel velocity.

Since the e↵ective velocity is very close to Dec axis, after flipping, most brightness

image in the positive Dec is now on the right side. In the aid of the pre-estimated

angle, ambiguity is partially solved and the corrected brightness distribution is

shown in Figure 4.5. In this figure, black line presents the parallel axis estimated

in Chapter 2. That black line goes through the main axis of this reconstructed

brightness image after flipping. It could be possible that scattered image main axis

probably didn’t change much in the time span of 22 months, or they happens to

be similar at those two di↵erent times.

There are some small perpendicular fluctuations along parallel axis. For

example, we can see four blobs which correspond to the blobs in Figure 4.2, the

one which is the most close to the origin shows a significant displacement from the

axis of the image [21].

The pre-estimated angle can’t help us to solve the position ambiguity of the

image in the center part, because there is no phase information from this dataset

and when it’s close to the center, flipping can’t help any more.

4.4 Conclusions

In this chapter, we use the electric field representation results from M.A.

Walker and D.R.Stinebring, and convert the plot of |µ̃
j

(f
D

, ⌧)|2 into a scattered
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Figure 4.5: Brightness distribution B(✓), uniformly sampled in (⌧, f
D

) domain,
flipped version of Figure 4.3

brightness B(✓). Ambiguity is partially solved except the center part of the scat-

tered brightness image, and the final brightness is shown in Figure 4.5.

The reconstructed brightness is obviously unbalanced (much brighter in the

left side than the right side). We dont have a good model to fit this image yet.

Its definitely not kolmogorov, nor Guassian. We are still working on it so we can

estimate the axial ratio of this image.

Based on the elongated image found in chapter 2 and the knowledge that

two ambiguities are symmetric to the velocity axis, we flipped the upper part of the

brightness image about the velocity axis. The flipped brightness image’s parallel

axis shows a very tight match with the original estimated axis angle from chapter

2, which implies that the scattered image main axis didn’t change much in the

time span of 22 months. The perpendicular fluctuation is shown, specially by the

blob at (RA=-5mas, Dec=9mas). This perpendicular fluctuation phenomenon is
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observed also in the other data set that we worked in Chapter 2, 3 and 5. In

Chapter 5, we work on the model with perpendicular information in it.



Chapter 5

1-D (linear) brightness image

model

Both two data set of the pulsar 0834+06 implies elongated brightness im-

ages. In this chapter, we take extreme case of the model to make it a 1-dimensional,

both straight-line brightness model and its modified curvi-line model are intro-

duced. Based on those models, both primary feature and o↵set feature are ana-

lyzed, and their brightness distribution in both parallel ✓k and perpendicular ✓?

direction is estimated from secondary spectrum domain. Deepest gradient method

and cleaning method are applied and modified to estimate brightness and ✓?. ✓k

in this chapter is the same definition of Chapter 2, which is relative to the the

main axis of elongated brightness image, and the dataset we use in this chapter is

also the same as Chapter 2.

5.1 1-D straight-line brightness model

The easiest and most straightforward model is the 1-D straight-line bright-

ness model. In this case, the backward position mapping from each pair of (f
D

,

⌧) to two corresponding interference positions (✓1,✓2) has no ambiguity, which

makes it possible to re-construct the entire secondary spectrum based on a given

brightness distribution.

93
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There are two linear components in this model: Primary linear feature and

an o↵set linear feature. The self-interference of primary linear feature contributes

the most part of the secondary spectrum except some reversed sub-arcs located

around (�40mHz, 1ms) in Figure 2.1 which is caused by the interference between

primary linear feature and o↵set linear feature. Those two linear features are shown

in Figure 5.1 in RA-Dec coordinate. The angle between those features and velocity

is ↵1 (↵1 = 25.4o)and ↵2(↵2 = 51.3o) respectively which are from the estimate in

Chapter 2.5.4 . The primary linear feature goes through the origin with its center

at the origin. The o↵set features center is marked as O0 in Figure 5.1 which is the

closest point to the origin.

Doppler and Delay of primary feature can be expressed as

f
D

=
(✓2k � ✓1k) cos↵1Veff

�
(5.1)

⌧ =
(✓2

2k � ✓2
1k)Deff

2c
(5.2)

Where ✓1k and ✓2k are two interference points along the primary feature.

Doppler and Delay of o↵set features can be expressed as

f
D

=
(✓3k cos↵2 � ✓1k cos↵1)Veff

�
(5.3)

⌧ =
((✓3k cos↵2)2 + (✓3k sin↵2 + ✓?0 cos↵2)2

� ✓2
1k)Deff

2c
(5.4)

Where ✓1k is along the primary feature and ✓3k is along the o↵set feature,

and ✓?0 is the distance between origin and O0.

Each pair of (f
D

, �) in secondary spectrum can be treated as the integra-

tion of all interference between any legitimate pairs of B(✓1) and B(✓2). From

Equation 3.52 with zero baseline, we can get the formula which relates brightness

and secondary spectrum (see Equation (8) in [13]).
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Figure 5.1: Straight-line features: A primary linear feature and an o↵set linear
feature, the angles between those two features and velocity is ↵1 (↵1 = 25.4o)and
↵2(↵2 = 51.3o) respectively. The primary linear feature goes through the origin
with its center at the origin. The o↵set features center is marked as O0.

Ĩ(f
D

, ⌧) =

ZZZZ
B(✓1)B(✓2)�

2(f 0
D

� f
D

)�2(⌧ 0
� ⌧)d✓1 d✓2 (5.5)

Since this is 1-D brightness model without ✓? fluctuation, brightness in 2-D

coordinate can be expressed as B(✓) = B(✓k)�(✓?) . Then equation 5.5 becomes

Ĩ(f
D

, ⌧) =

ZZ
B(✓1k)B(✓2k)�(f

0
D

� f
D

)�(⌧ 0
� ⌧)d✓1k d✓2k (5.6)
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5.1.1 Primary Linear Feature Model

For primary feature, by solving Equations 5.1 and 5.2, we get the backward

position mapping equations as below

✓1k =
⌧ 0V

eff

cos↵1

f 0
D

D
eff

�
�

f 0
D

�

2V
eff

cos↵1
(5.7)

✓2k =
⌧ 0V

eff

cos↵1

f 0
D

D
eff

�
+

f 0
D

�

2V
eff

cos↵1
(5.8)

Based on the equations above, Jacobian J
pf

is

J
pf

=

������

�✓1k
�f

0
D

�✓1k
�⌧

0

�✓2k
�f

0
D

�✓2k
�⌧

0

������
=

c

D
eff

f 0
D

(5.9)

After applying Jacobian and integrating over �(), secondary spectrum has

this very simple form based on the assumption that this is 1-dimensional structure.

Ĩ(f
D

, ⌧) = B(✓1k)B(✓2k)
c

D
eff

f
D

(5.10)

It shows that amplitude of each pair of (f
D

, ⌧) comes from interference of

two points at (✓1k,✓2k) with brightness B(✓1k) and B(✓2k).

5.1.2 O↵set Linear Feature Model

For o↵set feature, by solving Equations 5.3 and 5.4, we get the backward

position mapping equations as below

✓1k = A1 + ✓?0 sin↵1 cos↵2 +

p
A2

1 � A2(r2
� 1) + A3

r2
� 1

(5.11)

✓3k = A1 + r✓?0 sin↵1 cos↵2 +
r
p

A2
1 � A2(r2

� 1) + A3

r2
� 1

(5.12)
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where

r =
cos↵2

cos↵1
(5.13)

A1 =
f

D

�

V
eff

cos↵1
(5.14)

A2 =
2⌧c

D
eff

(5.15)

A3 = ✓2
?0(r

2
� cos2 ↵2) cos↵2

2 + ✓?0A1 sin 2↵2 (5.16)

Based on the equations above, Jacobian J1ms

can be expressed as

J1ms

=

������

�✓1k
�f

0
D

�✓1k
�⌧

0

�✓2k
�f

0
D

�✓2k
�⌧

0

������
=

�c

V
eff

cos↵1Deff

p
A2

1 � A2(r2
� 1) + A3

(5.17)

After applying Jacobian and integrating over �(), secondary spectrum for

o↵set feature has this fairly complicated form

Ĩ(f
D

, ⌧) = B(✓1k)B(✓3k)
�c

V
eff

cos↵1Deff

p
A2

1 � A2(r2
� 1) + A3

(5.18)

5.2 Estimate 1-D brightness by sampling secon-

dary spectrum

For initial guess of the brightness, we can sample the secondary spectrum

along the forward parabolic arc.

5.2.1 Primary feature

For primary feature, apexes of sub-arcs in secondary spectrum are due to

interference between the center (✓1k = 0) and o↵set point ✓2k. Its known that the

fluctuation in perpendicular direction is small, that makes the most apexes lie on

the a parabolic arc which can be expressed as
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⌧ =
D

eff

�2

2cV
eff

2 cos2 ↵1

f 2
D

(5.19)

Sampling along the main forward arc gives a quick and reasonable first

estimate of the brightness distribution, using formula

B(✓k) =
Ĩ(f

D

, ⌧)D
eff

f
D

B(0)c
(5.20)

Although B(0) is unknown, it is a constant, variation of brightness distribu-

tion is more interesting than actual intensity level. B(0) can be carefully adjusted

so brightness around the center is continuous and smooth.

Secondary spectrum can be equally sampled in delay ⌧ , Doppler frequency

f
D

or ✓k. f
D

is linearly proportional to ✓k which makes them the same. Since our

observation data has much finer resolution in delay, equal sampling in delay gives

higher resolution, except the very central part where slope of parabolic forward

arc is very small. In order to get highest possible resolution in brightness domain,

both sampling methods are used.

Once the highest-resolution directly-sampled brightness is achieved, re-

binning and interpolation can be used to get any desired resolution. Figure 5.2

is the directly-sampled brightness distribution from secondary spectrum of pulsar

B0834+06 observed by Arecibo at 322.5 MHz. Re-binning is done to reduce vari-

ations and interpolation is done to get the uniform sampling rate in ✓k.

The abrupt change near -10 mas shows variations on a scale as small as 0.1

mas. Variation in B(✓k) shows the evidence for scattering from a highly anisotropic

turbulent electron density which is inhomogeneous on scales as small as 0.05 AU.

There are other strong scattering regions such as from 3.8 to 7.5 mas.

The homogeneous part can be fitted with kolmogorov model. There are two

possible models. Since this 1-D brightness model presents 2-D scattering intensity

integrated along the perpendicular direction.
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B(✓k) =

Z
B(✓k, ✓?)d✓? (5.21)

If ✓k and ✓? are independent, then B(✓k, ✓?) = Bk(✓k)B?(✓?). After in-

tegration, B(✓?)d✓? becomes a constant, so the approximated form of 1-D kol-

mogorov model is

B(✓k) =
1

(1 + (
✓k

✓k0
)2)

11
6

(5.22)

If ✓k and ✓? are dependent, after integrating B(✓k, ✓?) over ✓? , the ap-

proximated form of 1-D kolmogorov model is

B(✓k) =
1

(1 + (
✓k

✓k0
)2)

8
6

(5.23)

Non-linear least squares routine is used to fit ✓k0 using two di↵erent models

above. Residuals are data minus model in natural scale, no weighting factor is

used. Figure 5.2 shows fitted 1-D kolmogorov model with index 11/6 (red curve)

and model with index 8/6 (blue curve). Both sampled brightness and models

are plotted in logarithm. Model 1 with index 11/6 seem to fit observation better

when ✓k is further out, which implies that for 2-D model width in ✓k and ✓? are

independent.

5.2.2 O↵set Feature

For o↵set feature, apexes of sub-arcs are also due to interference between

the center (✓k = 0) and o↵set point in o↵set linear feature. Apexes are mostly

lying on a forward arc which can be expressed as

⌧ =
D

eff

�2

2cV
eff

2 cos2 ↵2

(f
D

� f
D1)

2 + ⌧1 (5.24)

where (f
D1,⌧1) corresponds to the center point O0. And using Equation 5.18

gives us the estimate of o↵set feature’s brightness which is shown in Figure 5.3.
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Figure 5.2: Directly sampled brightness of primary feature in logarithm
(log10(B(✓k))), only green points are used for fitting. red curve is fitted 1-D kol-
mogorov model with index 11/6 and blue curve is fitted 1-D kolmogorov model
with index 8/6 .

B(✓k) =
Ĩ(f

D

, ⌧)V
eff

cos↵1Deff

p
A2

1 � A2(r2
� 1) + A3

B(0)�c
(5.25)
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Figure 5.3: Directly sampled brightness of o↵set feature in logarithm
(log10(B(✓k))), .
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5.2.3 Secondary spectrum calculation from linear bright-

ness

In this section, we calculate secondary spectrum from the directly sampled

1-D brightness from the last section. There are two steps to generate secondary

spectrum from a model brightness distribution.

1. Position Mapping: Every (f
D

, ⌧) can be mapped backward to two interfer-

ence angle (✓1k, ✓2k) using Equation 5.7 and 5.7 for primary feature and to

(✓1k, ✓3k) using Equation 5.11 5.12 for o↵set feature.

2. Brightness Interpolation: Linear interpolation is used to estimate the bright-

ness at any particular ✓k using the model brightness distribution. Using

Equation 5.10 and Equation 5.18, secondary spectrum for both primary fea-

ture and o↵set feature can be calculated.
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Figure 5.4: Observed Secondary Spectrum amplitude(left panel) and Modeled
Secondary Spectrum amplitude(right panel), primary feature

Figure 5.4 shows the observed secondary spectrum amplitude in the left

panel and calculated secondary spectrum amplitude in the right panel, both in

primary feature region. They agree in considerable detail which confirms that the
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Figure 5.5: Observed secondary spectrum amplitude(left panel) and modeled
secondary spectrum amplitude(right panel), o↵set feature

scattering is highly anisotropic. Except the central regions which have a slight

di↵erence which implies that primary linear feature have small width around the

origin. Also some reversed sub-arcs are mis-matched, such as the one with apex at

(�16MHz, 0.138ms) which is slightly shifted to the left. It implies that the linear

feature is not complete straight line.

Figure 5.5 shows the observed secondary spectrum amplitude in the left

panel and calculated secondary spectrum amplitude in the right panel, both in

o↵set feature region, at 314.5MHz. They agree in overall, but it’s clear that the

model still needs improvement to achieve higher agreement. For example, the ob-

servation has longer tail on the right side but the model has longer tail on the left

side, and there is a small gap at (�42MHz, 0.98ms) in the observation but it’s

filled in in the model.
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5.3 1-D Curvi-line Brightness Model

By observing secondary spectrum, we notice that apexes of some sub-arcs

do not lie on the main forward parabolic arc, hence that this 1 dimensional model

can not be completely straight. There are some small fluctuations in perpendicular

direction, as illustrated in Figure 5.6. In this section, ✓? is introduced to improve

our linear model.
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Figure 5.6: Curvi-linear features. It’s the same as Figure 5.1 except that both

linear features have small variation in their perpendicular direction.

Doppler and Delay of primary feature can be expressed as

f
D2 =

(✓2k � ✓1k) cos ↵1Veff

�
+

�(✓2? � ✓1?) sin ↵1Veff

�
= f

D

+ �f
D

(5.26)

⌧2 =
(✓2

2k � ✓2
1k)Deff

2c
+

(✓2
2? � ✓2

1?)D
eff

2c
= ⌧ + �⌧ (5.27)

Figure 5.6: Curvi-linear features. It’s the same as Figure 5.1 except that both
linear features have small variation in their perpendicular direction.

Doppler and Delay of primary feature can be expressed as
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f
D2 =

(✓2k � ✓1k) cos↵1Veff

�
+

�(✓2? � ✓1?) sin↵1Veff

�
= f

D

+ �f
D

(5.26)

⌧2 =
(✓2

2k � ✓2
1k)Deff

2c
+

(✓2
2? � ✓2

1?)D
eff

2c
= ⌧ + �⌧ (5.27)

Where ✓1? and ✓2? are small fluctuations at ✓1k and ✓2k along the primary

linear feature.

Doppler and Delay of the o↵set features can be expressed as

f
D2 =

(✓3k cos↵2 � ✓1k cos↵1)Veff

�
�

(✓3? sin↵2 � ✓1? sin↵1)Veff

�
= f

D

+ �f
D

(5.28)

⌧2 =
((✓3k cos↵2)2 + (✓3k sin↵2 + ✓?0)2

� ✓2
1k)Deff

2c

+
(✓2

3? + 2✓3?✓?0 cos↵2 � ✓2
1?)D

eff

2c
= ⌧ + �⌧ (5.29)

Where ✓1? is small fluctuation along the primary feature and ✓3? is small

fluctuation along the o↵set linear feature. The equations clearly shows the re-

lationship between the deviation (�f
D

, �⌧) in secondary spectrum domain and

deviations (✓1?, ✓2?, ✓3?) in ✓ domain.

5.3.1 Forward method and simulation

For straight-line brightness model, the backward position mapping from

each pair of (f
D

, ⌧) to two corresponding interference positions (✓1k,✓2k) has no

ambiguity, but for curve-line brightness model, there is no way that backward posi-

tion mapping can work, since two equations can’t solve four unknown parameters.

We tried simple curve-line model like sin() and without success.
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The idea of forward method is, only include the e↵ect of ✓? when it shifts

sub-arcs, using Equation 5.26 and 5.27 . Here are the more specific steps:

1. Backward method: Start it as backward position mapping assuming there

is no ✓?. After that, a secondary spectrum is constructed based on a given

straight-line linear brightness distribution using linear interpolation, as dis-

cussed in section 5.2.3

2. ✓? Interpolation: Using Equation 5.26 and 5.27, find the corresponding

(�f
D

, �⌧) for each pair of (f
D

, ⌧). During calculating (�f
D

, �⌧), inter-

polation is needed to estimate ✓? at any ✓k based on a given discrete ✓?(✓k)

model function.

3. Shift pixel using 2-D interpolation in (f
D

, ⌧): Shift each pixel by amount of

(�f
D

, �⌧). Since (�f
D

, �⌧) are not necessarily integer times of pixel size

(�f
D

, �⌧) and multiple pixels might be shifted to the same spot. For the

first problem, we treat each original pixels as mesh grids, and after shifting

a pixel, that pixel’s value is relocated into those adjacent four pixel grids

around (f
D2, ⌧2), as demonstrated in Figure 5.7, by the areas of the pixel in

those four adjacent pixel grids. For the second problem, make sure to ac-

cumulate the pixel value in each grid, don’t do averaging, since no Jacobian

e↵ect is included.

For primary feature, according to Equation 5.26 and 5.27 , �f
D

is linear

function of ✓?, while �⌧ is quadratic function of ✓?, since ✓? is very small, then

�⌧ can be ignored compared to �f
D

. In other words, ✓? fluctuation along primary

feature mainly moves the sub-arc horizontally.

Simulation is used to validate those equations and algorithm and is shown

in Figure 5.8. The left panel shows the simulated secondary spectrum without ✓?

after step 1, and the right panel shows the secondary spectrum after step 3. The

bright sub-arc with apex located at (�16.7mHz, 0.14ms) is shifted to the left side
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3. Shift pixel using 2-D interpolation in (f
D

, tau): Shift each pixel by amount

of (�f
D

, �⌧). Since (�f
D

, �⌧) are not necessarily integer times of pixel size

(�f
D

, �⌧) and multiple pixels might be shifted to the same spot. For the

first problem, we treat each original pixels as mesh grids, and after shifting

a pixel, that pixel’s value is relocated into those adjacent four pixel grids

around (f
D2, ⌧2), as demonstrated in Figure 5.7 (re-draw the figure later!),

by the areas of the pixel in those four adjacent pixel grids. For the second

problem, make sure to accumulate the pixel value in each grid, don’t do av-

eraging, since no Jacobian e↵ect is counted.

Figure 5.7: shifting pixels by(�f
D

, �⌧)

For primary feature, according to Equation 5.26 and 5.27 , �f
D

is linear

function of ✓?, while �⌧ is quadratic function of ✓?, since ✓? is very small, then

�⌧ can be ignored compared to �f
D

. In another word, ✓? fluctuation along pri-

mary feature mainly moves the sub-arc horizontally.

Simulation is used to validate those equations and algorithm and is shown

in Figure 5.8. The left panel shows the simulated secondary spectrum without ✓?

after step 1, and the right panel shows the secondary spectrum after step 3. The

bright sub-arc with apex located at (�16.7mHz, 0.14ms) is shifted to the left side

Figure 5.7: shifting pixels to (f
D2, ⌧2)

after applying (�f
D

, �⌧). The good news about moving horizontally is that, when

we continuously change ✓? at one specific ✓k, the overall change of secondary spec-

trum is smooth as well, so the sum of residual between the constructed secondary

spectrum and observed secondary spectrum is also a continuous function of ✓?.

This is very important, since non-linear fitting algorithm use gradient to estimate

the step size and and direction of the next iteration, and dis-continuous function

would lead to very bad estimate of gradient and eventually blow up the fitting

algorithm. For primary feature, gradient method works very well in estimating

gradient, all details will be discussed in the following section.

5.4 Estimate primary feature’s brightness and ✓
?

5.4.1 Least Mean Squares (LMS) Problem

Secondary spectrum generated by forward method can be treated as non-

linear function of brightness distribution B(✓k) and ✓? distribution ✓?(✓k). By

minimizing the sum of square of di↵erence between modeled secondary spectrum

and observed secondary spectrum, or called evaluated function, F (x), where x is

a vector of discrete brightness and ✓k.



107

doppler (mHz)

de
la

y 
(m

s)

 

 

−40 −35 −30 −25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8 8.5 9 9.5 10 10.5 11 11.5 12

doppler (mHz)

de
la

y 
(m

s)

 

 

−40 −35 −30 −25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8 8.5 9 9.5 10 10.5 11 11.5 12

Figure 5.8: shifting pixels by(�f
D

, �⌧), the left panel is the calculated secondary
spectrum using straight-line brightness and the right panel is the one using curve-
line brightness.

minimizeF (x) =
mX

i=1

(f
i

(x))2 =
X

(
Ĩ
obs

(f
D

, ⌧) � Ĩ
model

(f
D

, ⌧)

�(f
D

, ⌧)
)2 (5.30)

The best estimated B(✓k) and ✓?(✓k) can be achieved. Here Ĩ
obs

(f
D

, ⌧) and

Ĩ
model

(f
D

, ⌧) are observed and modeled secondary spectrum respectively. Theoret-

ically �(f
D

, ⌧) should be hĨ
obs

(f
D

, ⌧)i since it’s power spectrum and the standard

deviation is the same as its expectation, but we only had one observation. As

compromise, Ĩ
obs

(f
D

, ⌧) is used but it turned out it gives too much emphasis on

the noise background. We chose to use uniform weighting in the end.

This is a non-linear least-square problem. Matlab provides a powerful tool

called lsqnonlin, it includes a few common non-linear LMS algorithm, such as

Gauss-Newton method and Levenberg-Marquardt method. Gauss-Newton method

provides quadratic convergence and Levenberg-Marquardt method is a more e�-

cient version of Gauss-Newton method. Both methods are good in the final stage

of the iterative process. We got very convincing fitting result using lsqnonlin when

straight-line brightness distribution is fitted. But when ✓? is included, lsqnonlin
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doesn’t work well. Quadratic convergence makes the small dis-continuousity even

worse, Plus there isn’t any easy way to adjust the step size using lsqnonlin, it might

be true that the initial step size is too big. Lsqnonlin is an easy and reliable tool

most of time, but it’s clear that it can’t deal with case like our curvi-line brightness

model.

We used a gradient method combined with line search method. Gradient

method works better if the initial guess x0 is far away from minimizer x⇤. And

we can always change step size or stop criteria. Below is a detailed discussion on

gradient method and line search method.

5.4.2 Gradient method

Gradient method, or called steepest descent methods, is a very common

method to solve LMS non-linear problem. It’s an iterative process: From a starting

point x0, the method produces a series of vector x1, x2, ..., which converges to x⇤,

a local minimizer. The descending condition is

F (x
k+1) < F (x

k

) (5.31)

Each iteration consists in:

1. Find a descent direction h

2. Find a step length ratio ↵ giving a good decrease in the F-value.

3. Update x with x + ↵h if the descending condition is satisfied.

We assume that F (x) is di↵erentiable and smooth so that the below Taylor

expansion is valid

F (x + ↵h) = F (x) + ↵hTF0(x) + O(↵2) (5.32)

where gradient vector F0(x)
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F0(x) =

2

664

@F (x)
@x1

@F (x)
@x2

...

3

775 (5.33)

The relative gain in function value F (x) satisfies

lim
↵!0

F (x) � F (x + ↵h)

↵||h||

= �

hT

||h||

F0(x) = �||F0(x)|| cos ✓ (5.34)

Where ✓ is the angle between vector h and F0(x). This means that the

steepest descent direction h
sd

is given when ✓ = ⇡

h
sd

= �F0(x) (5.35)

Gradient method is often very slow since the convergence is linear, but it

has good performance in the initial stage of iterative process since its more reliable

and robust. We usually combine it with a line search method which is discussed

later.

5.4.3 Line search method

Line search method is usually combined with gradient method to solve LMS

nonlinear problem. In each iteration step, given a descent direction h
sd

, it moves

from x in step size ↵h
sd

. ↵ is a really important parameter. When ↵ is too small,

the convergence is too slow, ↵ should be increased. When ↵ is too big, then its

possible that the new x is too far from the other side of the minimum, descend-

ing condition wont be satisfied, ↵ should be decreased. When ↵ is close to the

minimizer, accept this ↵ value. Line search method provides a way with adaptive ↵.

While realizing this method with gradient method for our specific case,

there are some parameters we need to choose carefully.

1. Gradient step size dx: dx is used when estimating @F (x)
@x

i

⇡

F (x
i

+dx)�F (x
i

�dx)
2dx

,

we find 0.1-0.3 mas for ✓? and 0.2-0.4 for log10(B(✓k)) are pretty reasonable
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gradient step sizes.

2. Stop criteria: Maximum iteration times k
max

and two thresholds ("1, "2).

when gradient magnitude is smaller than "1, or the magnitude of change in

x is smaller than "2, or the iterate reaches k
max

, we terminate the iterations.

3. Initial step length ratio ↵: Step length (↵h) is increment or decrement in

x in each iteration, which is a totally di↵erent definition from step size dx

which is used to estimate gradient.

The flowchart below shows how this method works with gradient method.

First initialize dx, ↵, k
max

,"1 and "2, and set v=2. v is used to control the

step length in each iteration. When k is smaller than k
max

, first estimate F0(x)

and h
sd

.

If ||F0(x)|| < "1 or ||h
sd

|| < "2, terminate the iteration. If not, check if the

mean squared residual is lower than the previous valid one. If not, it means that

the step length is too big, so decrease v by half and re-estimate ||F0(x)|| and h
sd

,

and do it several times until the mean squared residual is lower. Then accept this

new x, reset v back to 2, and start another iteration again.

In our case, the initial step length ratio ↵ is the most important parameter.

Too small ↵ needs too many iterations, since the convergence is too slow. If ↵ is

too big, then we waste a lot of iterations trying to decrease v by half.

5.4.4 Pre-scale

We need fit both both Brightness and ✓?, and their value ranges are di↵erent

from each other. Inside one parameter set, like Brightness at di↵erent ✓k, or

✓? at di↵erent ✓k, we want similar step lengths too, otherwise they converges at

di↵erent speed and changing v (v is a scalar for all parameters) wont help us find

an appropriate step length for all parameters in that set. In order to solve this

problem, pre-scale is very important. Pre-scale factor can be applied to fitted

parameter x, or step length h
sd

. Here we apply it to step length.
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Figure 1 flowchart of our algorithm 

We need fit both both Brightness and  ϴ+, and their value ranges are very different 
from each other, which means that they need different step lengths. For our 
simulated data, the reasonable step length for Brightness in log scale is around 0.1 
and the reasonable step length for  ϴ+ is around 0.05 mas. 

No 

No yes 

yes 

Start 

 

 
Initialize dx, kmax, ε1 

and ε2. v=2, α. 

𝐡𝐝 =  −v ∗ α ∗ 𝐅′(𝐱) ∗ factor 
Estimate  𝐅′(𝐱) 

k<kmax 

x = x + 𝐡𝐝 

v = 2 

𝐹(𝐱) >  𝐹(𝐱 + 𝐡𝐝) 

 

v = v/2 

end 

 

 Test ε1,ε2  

yes 

No 

Run a test, find weighting 
factor for α. 

Figure 5.9: flowchart of gradient method

Step length can be expressed as

h
sd

= �v ⇤ ↵ ⇤ F0(x) ⇤ ScaleFactor (5.36)

Scale factor is chosen so that based on the first estimate F0(x0), average
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h
sd

in each block with size of 10 parameters is equal to 0.1 for Brightness and 0.05

mas for ✓?. The estimated F0(x0), using F (x
i

+dx)�F (x
i

�dx)
2dx

might not be accurate

that’s why averaging of size of 10 is used to decrease the variance of the estimate.

5.4.5 Simulation

−30−20−100102030

9

10

11

e||  (mas)
8 

−2
−1
0
1
2

theoritical
W/ noise,�Directly 
Sampled

x0
fit result

theoritical
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−30−20−100102030 e||  (mas)

Figure 5.10: Brightness (upper panel, y axis is in logarithm scale(log 10(B)) and
✓? (lower panel, y-axis is in unit of mas)). Black line is the upper panel is the
input theoretical 1-D kolmogrov model with two spikes and noise, magenta line is
the directly-sampled brightness, yellow line is the initial guess and red line is the
fitting result. In lower panel, black, yellow and red also represent the input, initial
guess and fitting result of ✓?

Since we don’t know the actual B(✓k) and ✓?(✓k), It’s impossible to tell

if the fitting is successful or not. That’s why before we apply those algorithms

directly to the observed data, simulation is needed to test the algorithms first. If

the fitting result match the input B(✓k) and ✓?(✓k), then the algorithm works.

A simulated ’observed’ secondary spectrum is first generated using ’known’

B(✓k) and ✓?(✓k). Figure 5.10 shows the known B(✓k) in the upper panel and

✓?(✓k) in the lower panel. The known B(✓k) which is marked in black is generated
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Figure 5.11: zoomed in version of Figure 5.10

by using a theoretical 1-D kolmogrov model with two spikes at -10 mas and -14

mas, and multiplied with chi-square noise of k=2 which is shown as ripples. The

known ✓?(✓k) is generated from a smoothed version of the individual identified

apexes which are estimated in Chapter 2. we add a small fluctuation on brightness

and use it as initial guess of brightness x0, and zero as initial guess of ✓?(✓k), both

of them are marked in yellow. The fitting region is [-15 -8] mas. The fitting result

is marked in red using gradient and line search method. Those red dots (fitting

result) lays on black dots (input) which indicates that the gradient method with

linear search method converge to the minimizer x⇤. Figure 5.11 is the zoomed in

version of Figure 5.10 so details can be shown, fitting result is very close to the

input B(✓k) and ✓?(✓k).

Figure 5.12 shows the simulated ’observed’ secondary spectrum and mod-

eled secondary spectrum with fitted x⇤. They only show the region that corre-

sponds to the fitting region in B(✓k) and ✓?(✓k) as marked as Figure 5.10. simu-

lated ’observed’ secondary spectrum and modeled secondary spectrum with fitted
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Figure 5.12: upper: simulated ’observed’ secondary spectrum. lower: modeled
secondary spectrum with fitted x⇤.
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Figure 5.13: Residual before and after fitting
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x⇤ are very much alike. Left panel in Figure 5.13 shows the normalized residual

between ’observed’ secondary spectrum and modeled secondary spectrum with x0

before fitting and right panel shows the residual after fitting. It’s normalized by a

constant so the residual is between -1 and 1. The mean of squared residual after

fitting is reduced from 0.087 to 0.026.

5.4.6 Primary feature fitting result

Simulation proves that the fitting algorithm converges and we apply it to

the real observed secondary spectrum data.

Figure 5.14 shows the amplitude of observed secondary spectrum of Pulsar

B0834+06 at 326MHz with 4 channels of total 32MHz bandwidth.
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Figure 5.14: Observed Secondary spectrum of Pulsar B0834+06 at 326MHz with
4 channels of total 32MHz bandwidth

Figure 5.15 shows the fitted B(✓k) and ✓?(✓k). In the upper figure, dots in

magenta are sampled brightness, dots in yellow are the initial guess of brightness

and dots in red are fitted brightness using gradient and line search method. In
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the lower figure, dots in yellow are zeros initial value for ✓?(✓k) and red dots are

fitting result. The fitted ✓?(✓k) matches the identified apexes positions, the latter

is shown in Figure 5.10. It’s a good evidence that the fitting was a success.
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Figure 5.15: Brightness (the upper panel, y axis is in logarithm scale(log 10(B))
and ✓? (lower panel, y-axis is in unit of mas)). Magenta dots are the directly-
sampled brightness, yellow dots are the initial guess and red dots are the fitting
result. In the lower panel, yellow and red also represent the initial guess and fitting
result of ✓?

Figure 5.16 shows the modeled secondary spectrum with fitted B(✓k) and

✓?(✓k) and Figure 5.17 shows residual before (left panel) and after fitting(right

panel). The fitting is done in the entire secondary spectrum but Figure 5.16 and

Figure 5.17 only show part of it. The mean of squared residual after fitting is

reduced by about 75 percent, which is from 0.1516 to 0.03846.
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Figure 5.16: Modeled Secondary spectrum with fitted B(✓k) and ✓?(✓k)
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Figure 5.17: Residual before and after fitting

Figure 5.18 presents the ✓?(✓k) in ✓ domain. The peak of ✓? is ⇠ 1 mas, but

in �30 mas to 30 mas region its not a big fluctuation, which is better illustrated

in this figure.

All figures above provide a very strong evidence that the primary feature
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Figure 5.18: ✓?(✓k) in RA-Dec coordinates, in unit of mas in both coordinates

part of this interstellar medium’s structure is very close to a curvi-line with bright-

ness distribution as shown in Figure 5.15. And the peak in B(✓k) at ✓k = �10 has

the biggest ✓?.

5.5 Estimate o↵set feature’s brightness and ✓
?

For o↵set feature, according to Equation 5.28 and 5.29, because of the term

2✓3?✓?0 cos↵2, �⌧ is also linear function of ✓? after ignoring the higher order

terms, and ✓?0 is a big number which makes �⌧ the dominant term. In other

word, ✓? fluctuation along o↵set feature mainly moves the sub-arc vertically. This

phenomena makes a big di↵erence when we fit the ✓? using forward method. De-

tails will be discussed in the following sections.
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Before we jump to fitting o↵set feature’s brightness and ✓?, let’s look at

the observed o↵set feature in the secondary spectrum domain of Pulsar B0834+06,

the same data set of chapter 2, 3 and earlier sections of this chapter.

5.5.1 O↵set feature in di↵erent frequency channel

Primary feature in secondary spectrum shown earlier are from the dy-

namic spectrum of four 8MHz bandwidth sub-channels, with center frequency at

314.5MHz (channel 1), 322.5MHz (channel 2), 330.5MHz (channel 3) and 338.5MHz

(channel 4), or in other words, from a 32MHz bandwidth centered at 326.5MHz.

We check primary feature’s secondary spectrum in each sub-channel, and there are

no obvious di↵erence. But there are di↵erences for o↵set feature.

In Figure 5.19 to Figure 5.22, four sub-channels are plotted separately. It’s

clear that o↵set feature varies significantly between di↵erent channels. For exam-

ple, In channel 4, there is no thin sub-arcs above 1 ms, but in channel 1 there

are five thin sub-arcs, one at 1.1ms, two around 1.05ms, and another two around

1.07ms. In channel 2, there are four thin sub-arcs above 1 mas, the one at 1.1ms

disappears. In channel 3, those four sub-arcs in channel 2 merge into two sub-arcs,

but the thick sub-arc at 1ms is the strongest comparing to the other three chan-

nels. There are more di↵erences if you keep searching.

We still don’t understand why o↵set feature varies so much at di↵erent

frequency. From results of Chapter 2 we expected that the scattered image is

independent with frequency. This is still an unsolved puzzle for future research.

5.5.2 Cleaning Method

The gradient method can perfectly recover brightness alone for o↵set fea-

ture. But once ✓? is involved, even a small change in initial guess leads to a totally
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Figure 5.19: O↵set feature at 314.5MHz, the intensity is in log10 scale
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Figure 5.20: O↵set feature at 322.5MHz, the intensity is in log10 scale

di↵erent fitting result which clearly implies that this method doesn’t converge.

Gradient method only works when the evaluated function, F (x), is a con-

tinuous function of x. For primary feature, F (x) is a smooth function of both

brightness and ✓?, while for o↵set feature, F (x) is only a smoothed function of

brightness. The reason is: due to geometry, ✓? fluctuation along primary feature
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Figure 5.21: O↵set feature at 330.5MHz, the intensity is in log10 scale
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Figure 5.22: O↵set feature at 338.5MHz, the intensity is in log10 scale

mainly moves the sub-arc horizontally, while ✓? fluctuation along o↵set feature

mainly moves the sub-arc vertically. Because of the shape of reverse sub-arc, hor-

izontal shift doesnt make dramatic change in residual, but vertical shift will leave

a hole in the secondary spectrum (See Figure 5.23) and eventually makes mean

squared residual discontinuous.
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Figure 5.23: Simulated e↵ect of ✓? fluctuation on secondary spectrum at ⌧ =
1ms, the intensity is in log10 scale

Clean algorithm is well used in interferometry [42]. Here we borrow this idea

and change it to serve our purpose, and we call it cleaning method. The basic idea

is straightforward. First simulate one single sub-arc layer, then cross-correlate with

template data to find a few possible apexes, use some selection criteria to identify

them as true or false apex, subtract the true sub-arcs from the data according

to those apexes. Repeat those steps above on the remaining secondary spectrum

to find more possible apexes until a certain number of times is reached or the

remaining secondary spectra are all negative. The hardest parts of this method

in our particular case are, how to find possible apexes, and the selection criteria.

Once apexes are identified, we can easily convert them to ✓? given o↵set feature’s

parallel axis.

Detailed Steps of Cleaning Method:

1. Generate a single sub-arc, and use it as a standard layer. Left panel of

Figure 5.24 shows an example of sub-arc layer.

2. Find sub-arc template to calculate cross-correlation between this template

and entire secondary spectrum to locate a few possible sub-arc apexes (we

choose the first five positions with highest cross-correlation). We only choose

center part of the sub-arc as template (see right panel of Figure 5.24). If the
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Figure 5.24: Standard sub-arc layer (left) and its sub-arc template for cross-
correlation (right), y-axis is delay [0.6ms 1.15ms] and x-axis is doppler [-70mHz
-10mHz], the intensity is in log10 scale

selected sub-arc region is too far out, then cross-correlation can’t find the

right apexes. Left panel of Figure 5.25 shows the cross-correlation using full

sub-arc, peaks for di↵erent delay positions are not on the red line, which

is the apex positions according to the input ✓?. Right panel of Figure 5.25

shows the cross-correlation using sub-arc template in Figure 5.24 (right), and

the peaks are now on the red line. The reason is that, when the chosen sub-

arc region is too further out, then when we move the template along Doppler

direction, the template sub-arcs arm will touch other sub-arcs below it which

gives spurious correlation.

3. Judge if those five possible apexes as true or false apexes, by checking cor-

responding sub-arcs with those apexes in the remaining secondary spectrum

(we just call them evaluated sub-arcs) and compare them with the standard

sub-arc layer shown in the left panel of Figure 5.24. Two criteria are used:

(a) Check how many zero/negative pixels in those evaluated sub-arcs. If the

zero/negative pixels ratio is above some threshold (we usually choose

10%-20%), then treat this apex as a bad guess, and put it into a black-

list.
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Figure 5.25: Cross-correlation using full sub-arc as template (upper) and partial
sub-arc (down), y-axis is delay [1.015ms 1.04ms] and x-axis is doppler [-45mHz
-36mHz], the intensity is in log10

(b) Estimate 1-D core image’s brightness using sub-arcs (let’s call it ’ sub-

arc core brightness’) and calculating their cross-correlation coe�cients

with the previously-estimated 1-D core image brightness. Each sub-arc

can be treated as the interference between the core of primary feature

and one o↵set point in o↵set feature, like what is discussed in Chapter

3. In this case, we assume both primary feature and o↵set feature are

linear, so evaluated sub-arcs are thin in delay and averaging it over delay

plus Jacobian could give us an good estimate of the primary feature’s

core 1-D brightness.
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Simulation is done to test the method. We first simulate reversed sub-

arc using the estimated 1-D core image of primary feature, which is

shown in Figure 5.26 as red points. Then we apply the method above

to the sub-arc, multiply a constant, and plot the estimated sub-arc core

brightness in the same figure as black curve. They match pretty well.

We also test it on observation data. Blue curve in Figure 5.26 comes

from the identified sub-arc in channel 1 (Figure 5.19), and background

is carefully removed before estimating core image from sub-arc. We can

tell that the estimated core image from real observation is highly corre-

lated with black curve and red points. There is a little gap at 3.7mas

in blue curve, which is due to the fact that when we choose the sub-arc,

we use a threshold to exclude the noise, SNR is low at that region.

The cross-correlation between them shows the similarity between stan-

dard sub-arc and evaluated sub-arcs better than 2-d cross-correlation

we did earlier, because it can be easily normalized to get coe�cient and

use this number to exclude bad apexes. If the correlation coe�cient is

lower than a threshold (we usually choose 80% - 90%), then treat this

apex as a bad guess, and put it into the blacklist as well.

4. Shift the standard sub-arc layer to those possible apexes positions we get

in step 2, and subtract the normalized shifted sub-arc from the secondary

spectrum, with normalization factor c. The reason we subtract also bad

apexes, is because if all possible apexes are identified as bad guess in this

iteration, and if we don’t do that subtraction, then 2D cross-correlation in

the next iteration will locate the same possible apex positions.

5. Repeat step 2) to 4) N times.

6. Add all sub-arc layer back from the blacklist.

7. Clean again on the remaining secondary spectrum, with di↵erent c, N, and

template.
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Figure 5.26: 1-D core brightness of previous fitting result and of estimating from
sub-arc, y-axis is log10(B), x-axis is ✓k, red dot is 1-D core image estimated from
primary feature in previous chapter, black curve is 1-D core image estimated from
simulated reversed sub-arcs of 1ms o↵set feature, the blue curve is 1-D core image
estimated from observed reversed sub-arcs of 1ms o↵set feature,

5.5.3 Simulation of cleaning method and gradient method

Simulation is done to test if our cleaning method can find the right apexes.

Figure 5.27 shows the input and recovered ✓? using cleaning method. The black

curve is the input ✓?, the red points are the recovered ✓?, and green points are the

linear interpolation of red points. Figure 5.23 shows the the secondary spectrum

using the input ✓?. Its recovered very well, except that there is a gap in red dots

between -6 and -5.5 mas in Figure 5.27 where no valid apex is found over there.

Thats due to the hole in the secondary spectrum. ✓? is not perfectly recovered,

but matches the shape of the input very well.

Cleaning method can find a reasonably recovered ✓? for o↵set linear feature,

but it has a hard time recovering the brightness. Since evaluated function F (x) is

still a continuous function of brightness for o↵set feature, gradient method works

perfectly for only recovering o↵set features brightness, based on the recovered ✓?

from previous cleaning method result.
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Figure 5.27: input (black curve) and recovered (red dots) ✓? using cleaning
method, green dots are the interpolation of recovered ✓?

The fitting result is very promising. Figure 5.28 shows the recovered bright-

ness and ✓? and Figure 5.29 zooms in the brightness in the center part. Red points

are the fitted brightness and black points are the input brightness. Most red points

are on the top of the black points implying that the combination of cleaning method

and gradient method works in recovering o↵set feature’s ✓? and brightness.
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Figure 5.28: input and recovered brightness (upper panel) and ✓? (lower panel)
using gradient method.
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Apply$cleaning$method$to$real$1ms$feature$data$
!
!
Improved$Doppler$profile!
We!used!1Id!doppler!profile!(see!figure5)!as!one!of!the!criteria!to!exclude!bad!apex!
positions!from!all!possible!apexes!determined!by!correlation!image.!!But!what!does!
Doppler!profile!mean?!It!doesn’t!have!any!direct!meaning!in!it.!After!we!generate!a!
single!subIarc!layer,!we!use!this!subIarc!as!a!mask!to!separate!each!subIarcsta!from!
the!secondary!spectrum,!then!we!average!it!along!delay!to!get!1Id!Doppler!profile.!
!
Although!it’s!meaningless,!it’s!related!with!primary!feature’s!core!brightness.!Each!
subIarc!can!be!treated!as!the!interference!between!the!core!of!primary!feature!and!
one!offset!point!in!1ms!feature.!If!subIarc!can!be!isolated!out!of!secondary!spectrum!
and!it’s!thin!in!delay,!then!averaging!it!over!delay!plus!Jacobian!could!estimate!the!
primary!feature’s!brightness.!We!first!generate!a!thin!subIarc!mask.!Before!when!we!
do!averaging!along!delay,!we!average!it!over!all!delay!pixels!which!cause!the!bias!
since!most!pixels!are!zero,!and!for!different!Doppler,!the!number!of!zero!pixels!is!
different!too.!!Now!we!average!it!only!nonIzero!pixels!along!delay.!Then!we!apply!
Jacobian!effect!on!it.!!
In!figure14,!we!first!use!simulation!to!generate!secondary!spectrum,!then!use!a!thin!
subIarc!mask!to!isolate!one,!then!apply!the!method!above!to!get!the!estimate!of!the!
brightness.!After!multiplying!a!constant,!I!plot!them!together!in!figure!14!so!we!can!
compare.!They!match!pretty!well.!(red!points!are!fitted!brightness,!black!curve!is!
from!subIarc)!
In!the!cleaning!method!later,!we!use!this!improved!doppler!profile!as!exclusion!
criteria.!
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Figure 5.29: zoom in version of Figure 5.28

5.5.4 Apply cleaning method to observation data and two

linear o↵set feature model
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Figure 5.30: Identified apexes in o↵set feature (channel 1, 314.5MHz) using
cleaning method in secondary spectrum, the intensity is in log10 scale, red dots
are identified apexes and red curves corresponds to the two straight lines in the
angular domain shown in Figure5.31

Now with observed data, Figure 5.30 shows the identified apexes in channel

1 using cleaning method and Figure 5.31 shows those apexes in RA-Dec coordinate.

According to those identified apexes, its clear that one linear o↵set model is not ac-
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Figure 5.31: Identified apexes in o↵set feature using cleaning method in angular
domain

curate and that a two linear feature model might fit this observation much better.

The two straight red lines in Figure 5.31 help us to visualize the separation of those

two groups of apexes and in Figure 5.30 we convert them into two forward parabolic

arcs in red. Let’s name the linear feature with bigger slope as o↵set linear feature

1 and the other as o↵set linear feature 2. At (RA = �15.5 mas, Dec = �21 mas),

linear feature 1 and 2 merge and it’s hard to tell which linear group those apexes

belong to. To make the model simple, we assume that linear feature 2 starts

around (RA = �12 mas, Dec = �24 mas) and ends right before the crossing, and

all other apexes belong to linear feature 1.

Is that possible that the gap between those two linear o↵set features is ac-

tually filled in? In another word, is it possible that this is one thick feature with

width instead of two? It’s not possible. if it was, then there shouldnt be any gap

between those two forward red parabolic arcs.
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Figure 5.32: Modeled and observed two linear o↵set feature at 314.5MHz. upper-
left: modeled linear feature 1, upper-right: modeled linear feature 2, lower-left:

both modeled linear features added together, lower-right: observed o↵set linear
feature

Its a very interesting result. We never think it this way until the cleaning

method provides more accurate apexes positions. What would the secondary spec-

trum look like if we the brightness model in the angular domain is two straight

line? Based on this two straight-line model, we simulate the secondary spectrum

using directly-sampled brightness along the two forward parabolic arcs in Fig-

ure 5.30. Figure 5.32 shows the modeled o↵set linear feature 1 and 2 in the upper

two panels, linear feature 1 and 2 added together in the left-down panel and the

observed linear o↵set feature in the right-down panel. Comparing to Figure 5.5

which uses one linear o↵set feature model, two linear feature model is much closer

to the observation data.
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5.5.5 Fit brightness based on 2 linear o↵set feature model

In order to make the fitting simple and e�cient and in the same time keep

the model accurate, from now on, we use two straight-line model for linear o↵set

feature, while we still use one curvi-line model for primary feature.

We use directly- sampled brightness as initial guess, and we use both gradi-

ent method as discussed in section 5.4, and lsqnonlin fitting program provided in

matlab which uses Levenberg-Marquardt (L-M) algorithm. Those two algorithms

return very similar fitting results. Figure 5.33 shows fitted brightness using gra-

dient method (marked in blue) and lsqnonlin (marked in red), for linear feature

1(upper panel) and linear feature 2(lower panel). zero ✓k corresponds to the lowest

delay of those two linear features. Vertical red line indicates the crossing of two

linear feature, and we align those two linear feature according to the crossing. In

both linear o↵set features, specially linear feature 1, both algorithms match very

well. It implies that both gradient method and L-M method converge. It makes

perfect sense that all LMS algorithms are supposed to converge to the same value,

it’s not dependent with what algorithm you use. In the rest of this section, all

fitting results are from lsqnonlin.

Figure 5.34 shows the fitted brightness of linear feature 1 in the upper panel

and linear feature 2 in the lower panel. Four channels are marked in blue (channel

1), red (channel 2), green (channel 3) and black (channel 4), respectively. Two

linear features are aligned in the same way as Figure 5.33.

In linear o↵set feature 1, there is a peak at �11 mas, which doesn’t show

up in all other channels, that matches the phenomenon that that thin sub-arc at

⇠ 1.1 ms only appears in channel 1. It also clearly shows how those four sub-arcs

merge into two from channel 2 to channel 3, at �8.5 mas and �9.5 mas, the red

curve has two big peaks, each of them has a dent which forms two small peaks

next to each other, and in green curve, those two small peaks become one, and in

black curve, all of them disappear. At -7 mas, brightness in four channels drops

with a di↵erent slope, the order from slowest to fastest is the same order of channel.
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Figure 5.33: Fitted brightness of linear feature 1 (upper) and linear feature 2
(lower) using gradient method (blue) and L-M method (red), y-axis is log10(B)

In linear o↵set feature 2, brightness in general is weaker than linear feature

1. Because of lower SNR, the brightness looks more noisy. Green curve (channel

3) is obviously higher than all other channels between -4 to -3 mas, which matches

the phenomenon that in channel 3 there is a strong thick sub-arc at 1ms.

Figure 5.35 to Figure 5.38 show observed secondary spectrum (left) and

modeled secondary spectrum (right) from channel 1 to 4, based on the fitted bright-

ness shown in Figure 5.34. All of those models match the observation, implying

that this two linear o↵set model is a simple and accurate model.

Except that there is some weak signal on the right tail of the reversed

sub-arcs in the observation data, but it’s not there in our models. For example,

in Figure 5.37, there is some signal at (-22mHz, 0.8ms) in the left panel, which

is not shown in the model in the right panel. That position corresponds to the

interference of the 1ms o↵set feature and the bright primary feature at -10mas.

The reason that it’s not shown in the model is that, based on the 1-D brightness
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Figure 5.34: Fitted brightness of linear feature 1 (upper) and linear feature 2
(lower), in all four channels, y-axis is log10(B)

image model, all those simulated reversed sub-arcs’s width gets smaller and smaller

when from its left tail to its right tail, due to Jacobian. When it reaches to the

most right end, it becomes a broken line and eventually disappears . But in real

observation, the brightness image has small width which will make it possible to

see the interference of the 1ms feature and the bright primary feature at -10mas.

5.6 Conclusion

In this chapter, we take extreme case to make it a 1-dimensional model.

Both straight-line and curve-line models are studied.

Straight-line linear model has unique position mapping between secondary

spectrum and angular spectrum, backward method can be used to re-construct the
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Figure 5.35: Observed and modeled two linear o↵set feature in channel 1. upper-
left: observed o↵set linear feature, upper-right: modeled o↵set linear feature with
fitted brightness and two linear features.
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Figure 5.36: The same as Figure 5.35, but in channel 2

straight-line linear brightness distribution. However, straight-line can not explain

the phenomenon that the apexes of some reverse sub-arc are shifted away from the

main forward parabolic arc.

Curvi-line linear model is more close to our observation, however, it has

ambiguity when we try to find the angular position from secondary spectrum so
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Figure 5.37: The same as Figure 5.35, but in channel 3
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Figure 5.38: The same as Figure 5.35, but in channel 4

backward method can’t be used. In order to solve this, an approximation method

is developed to realize the position mapping and brightness reconstruction. We use

curvi-line linear model on primary feature, and use gradient method to fit both

B(✓k) and ✓?(✓k). We apply this method to observation data after simulation is

verified, and find a good estimate of the primary feature’s brightness distribution

along ✓k with ✓? fluctuation.
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It’s hard to apply the same technique to the 1ms o↵set feature, because

curvi-line linear model for o↵set feature makes the evaluated function F (x) dis-

continuous, due to the geometric di↵erence between primary feature and o↵set

feature. We invented a new cleaning method to estimate the ✓? fluctuation, and

found out that o↵set feature is better modeled as two straight-lines, and we fit

the B(✓k) along both straight-lines. O↵set feature is quite di↵erent in di↵erent

channel, so all brightness is fitted in all four channels.



Chapter 6

Conclusion and physical

explanation of the scattered

image of pulsar B0834+06

6.1 Comparing the various models from previous

chapters

In each chapter we have di↵erent models and techniques, and di↵erent es-

timation of the scattered image based on those models and techniques.

In chapter 2, we used identified apexes position and phase information of

the secondary cross spectrum, to find the scattering positions of the screen, in

both in primary feature and o↵set feature regions. We also estimated the e↵ective

velocity and the e↵ective distance. We developed a good basic understanding of

the primary and o↵set feature. However, we did not estimate brightness on those

positions and we could not resolve points from the central core of the scattered

image. Figure 2.2 shows the astrometry image of the screen.

In chapter 3, we use reversed sub-arc to re-construct the 2-D core scattering

image which is shown in Figure 3.9. The core image has an axial ratio of ⇠ 3 and

137
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is tilted in the same direction as chapter 2. The brightness integrated over perpen-

dicular direction matches the 1-D Bk(✓k) estimated in chapter 2. The brightness

integrated over parallel direction which gives the estimate of B?(✓?) shows more

homogenous distribution.

Figure 6.1: Estimated 1-D brightness distribution including both primary and
o↵set feature, with dynamic range between -4 to 0. The o↵set feature in the red
square is expanded in Figure 6.2 below.

In chapter 4, we analyzed a di↵erent data set, but of the same pulsar. We

developed an imaging technique based on the electric field representation, which

has a two-fold ambiguity. As in Figure 4.5 it shows the same parallel direction as

in chapter 2 and 3. However, due to the lack of phase information, the position
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ambiguity can’t be solved, especially in the core image. We noticed four features

in Figure 4.5, one of which (RA=-5mas, Dec=8mas) is far o↵ the main parallel

axis of the primary feature which was not seen in the results of those two previous

chapters.
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Figure 6.2: The same as Figure 6.1, zoom in o↵set feature region, with dynamic
range between -6 to 2, four di↵erent channels. upper-left: Channel 1, upper-right:
Channel 2, lower-left: Channel 3, lower-right: Channel 4

In chapter 5, curvi-line linear feature model is used on primary feature, and

two straight-line linear model is used on o↵set feature. Figure 5.15 and Figure 5.34

show the brightness distribution and ✓? fluctuation for primary feature and o↵set

feature. Figure 5.18 and Figure 5.31 show the geometry of primary feature and

o↵set feature. It’s hard to combine them to give a good picture of their bright-
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ness image because the linear model has no width. In order to make it easy to

present brightness for linear model, we extended the fitted model in the perpendic-

ular direction using kolmogorov model, with a very small width. Figure 6.1 shows

the fitted curvi-line brightness image. There is one significant ✓? fluctuation at

(RA=3mas, Dec=-10mas). The o↵set feature is in the lower-right corner, but in

this dynamic range ([-4 0]) is too weak to see. Figure 6.2 zooms in and display

the two-linear o↵set feature model in a di↵erent dynamic range([-6 -2]) in four

di↵erent channels so the brightness variation can be seen. 1-D brightness model is

quite accurate if the actual brightness is essentially linear, and it can estimate the

brightness further away from the origin, instead of only estimating the core image

like in chapter 3. It reveals the fluctuation, and we found a good model for o↵set

feature as well.

Since chapter 4 is from a di↵erent dataset, we can’t compare them directly,

but we can compare the core image from chapter 3 and extended core image from

chapter 5. From chapter 3 we learned that the core brightness distribution along

primary feature’s parallel axis shows inhomogeneity while its distribution along

the perpendicular axis is more homogeneous. In order to include both, we model

the core image as a 2-D kolmogorov function modulated with a function of ✓k to

present the in-homogenous variation along the parallel axis.

B2(✓k, ✓?) =
F1(✓k)

[1 + (
✓k
✓kp

)2 + ( ✓?
✓?p

)2]11/6
(6.1)

From Chapter 3, ✓kp

= 3.85mas and ✓?p

= 1.3mas. F1(✓k) can be de-

rived by integrating B2(✓k, ✓?) over ✓? and equate it to 1-d brightness brightness

distribution B(✓k) in Chapter 5.

B2(✓k, ✓?) =
B(✓k)[1 + (

✓k
✓kp

)2]8/6

C0[1 + (
✓k
✓kp

)2 + ( ✓?
✓?p

)2]11/6
(6.2)

Where C0 = ✓?0
p

⇡�(4/3)/�(11/6) is a constant. In Figure 6.3, the left pane is

re-print of the 2-D core brightness image from chapter 3, and the right panel is

2-D extended core image from the curve-line 1-D brightness in chapter 5. They
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exhibit very similar patterns.
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Figure 6.3: Observed and modeled two linear o↵set feature in channel 1. upper-

left: observed o↵set linear feature, upper-right: modeled o↵set linear feature with
fitted brightness and two linear features.

Since the 2-D core brightness image has width, Figure 6.1 can not be ac-

curate. Unfortunately we don’t have knowledge about the perpendicular width

outside of the core image. Here we assume that outer part of the primary fea-

ture has the same characteristic width as the core image and extend Figure 6.1

using Equation 6.2 and it’s plotted in Figure 6.4. This 2-D brightness distribution

explains the 2-D core image better, and it also explains the anisotropic property

of the brightness, the in-homogeneity of the brightness distribution along primary

features parallel axis, and the perpendicular variation. It seems that among all the

model we obtained in this thesis, this extended 2-D core brightness image fits our

observation the best. This is similar to the scattered image estimated by Trang

and Rickett [49] for the pulsar B1133+16.

6.2 Summary of the properties of reconstructed

brightness image

Here is a summary of the properties that we have learned from all those

reconstructed brightness images.
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Figure 6.4: Estimated 2-D brightness distribution including both primary and
o↵set feature

1. Two separate features

There are two separate features, one is primary feature which goes through

the center, the other is an o↵set feature which is located around (RA =

�15mas, Dec = �22mas). O↵set feature’s brightness strength is ⇠100 times

weaker than primary feature, as you can see in Figure 6.1 and Figure 6.4.

2. Anisotropic

All brightness images are very anistropic. Primary and o↵set features are

both elongated, at di↵erent angles (The angle between those two features

and velocity is ↵1 = 25.4o and ↵2 = 51.3o respectively). While 3:1 is only

moderately anisotropic estimated at half of the peak brightness, the e↵ective

axial ratio at, say, 0.01 of the peak might be higher, making an extremely
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anisotropic image, which must be explained in terms of the underlying plasma

turbulence.

3. Inhomogeneous

The brightness distribution along primary feature’s parallel axis shows in-

homogeneity. No common model, such as kolmogorov, can be used to de-

scribe this distribution. There are a few very narrow peaks, such as (RA=3

mas, Dec=-10 mas) and (RA=-6mas, Dec=12.5 mas).

4. Homogeneous

The brightness distribution along primary feature’s perpendicular axis, as

shown in Figure 3.11, follows the homogenous kolmogorov model with ✓
p

=

1.3mas quite well.

5. curvi-linear model

There is fluctuation in ✓? along the primary feature’s parallel axis. The small

fluctuation can be seen in 2-D brightness figures, such as the right panel of

Figure 6.3. We noticed in particular the large displacement at (RA=3 mas,

Dec=-10 mas) which is a peak in brightness as well.

6. Frequency dependence

While the primary feature’s brightness image is independent with frequency,

the details of the o↵set feature’s brightness vary with frequency. For exam-

ple, Figure 5.34 shows the systematic shift with frequency. That might be

due to the the fact that refractive index is dependent with frequency and

o↵set feature’s displacement from the origin is due to refraction rather than

di↵raction.

n =

r
1 �

w2
p

w2
(6.3)
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6.3 Plasma turbulence

What is the physical plasma turbulence behind the scattered brightness

image? What is the relationship between them?

Scattered brightness image is what the pulsar looks like after its electromag-

netic waves travel through the interstellar plasma. Scattered brightness distribu-

tion doesn’t necessarily represent the same distribution of the interstellar plasma,

but they are related.

In order to explain the anisotropic image, there are two possible models

for the plasma distributions. We call them parallel [11] and orthogonal geometry

models.

1. In parallel geometry model, there is one big anisotropic filament aligned along

the main scattering axis, its shape is controlled the magnetic field whose di-

rection is the same as the main scattering axis. There are very compact,

denser ’knots’ which are responsible for the discrete locations of the sub-

arcs, and those ’knots’ are due to isotropic turbulence substructure, which

are distributed along the filament. Since the scattering is isotropic, the po-

tentially visible region on the screen would be circular with its angular size

determined by the scattered angle of the turbulence. However, the perpen-

dicular width is restricted by the width of the filament. The o↵set feature in

this model has the similar turbulence structure as the primary feature. It’s

caused by a separate big filament along its own scattering axis with denser

’knots’ on it, and it’s in the visible region so we can still see it. Figure 6.5

illustrates this parallel geometry model.

Advantage of the parallel model:

(a) Easy to explain o↵set feature, it has the same scattering type as the

primary feature.

(b) The o↵set feature is in the circular region if we choose the radius as the

distance between origin and furthest point of the primary feature.
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Figure 6.5: parallel geometry model

(c) Easy to explain the in-homogeneity, just due to the plasma turbulence

density of each clump along the line.

(d) Easy to explain the displaced blob in the brightness image with big ✓?,

such as the one at (RA=3mas, Dec=-10mas)

Dis-advantage the parallel model:

(a) While it is not clear how accurately the pulsar must be aligned behind

the filament, it seems an unlikely and special configuration.
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(b) Hard to explain the similarity of two data sets. The data set in chapter

4 looks similar with the other data set and they are 22 months apart,

It seems unlikely that the pulsar lies behind the center of the primary

feature at both times is even rarer.

(c) It’s rare that all the ’knots’ are in a line, both primary feature and o↵set

feature.

(d) It’s hard to explain that the estimated axial ratio of the core image is

⇠3 and the 2-D core image is smooth, unless a few ’knots’ are carefully

overlapped with each other, otherwise the axial ratio has to be 1.

item In [21], they observed the same pulsar in Jan of 2005 at the same

frequency over a period of 26 days. In their result the center of the

forward primary arc stays at the origin. If this was parallel model,

and the velocity direction is very close to the positive Dec axis, then it

wouldn’t stay at the origin.

2. In orthogonal geometry model, the primary feature is due to anisotropic

plasma turbulence elongated along the magnetic field which is orthogonal to

the direction of the primary scattering axis. Then the scattered brightness is

elongated along that axis. If the density and variance of the turbulence vary

along that axis, there will be in-homogeneity in the 1-D brightness. Since

it’s anisotropic, the visible region on the screen is not circular, with large

maximum scattering angle ✓
s2 in the parallel direction and small maximum

scattering angle ✓
s1 in the orthogonal direction. The perpendicular width of

brightness image is due to ✓
s1. The o↵set feature might be due to the similar

filament-shaped plasma turbulence as the primary feature in the same screen,

but in this area the column density of electrons has gradient. This electron

column density gradient work as a prism, pulsar’s plane wave is refracted

through the ’prism’ and bent to the direction of the earth. Figure 6.6 shows

the orthogonal geometry model with 1ms o↵set feature model 1, the prism

is illustrated as a green triangle in this figure.
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Figure 6.6: orthogonal geometry model 1

Advantage of the orthogonal model:

(a) Easy to explain pulsar position. Its not necessary that the pulsar has

to be right behind the center of the primary feature.

(b) Easy to explain the similarity of the two data sets.

(c) Prism-shaped column density of plasma in 1ms o↵set model causes fre-

quency dependent refraction to explain why the o↵set feature is fre-

quency dependent.
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(d) It doesn’t require special plasma structure as a few ’knots’ in a line.

(e) Easy to explain the reconstructed 2-D core image with axial ratio of 3.

Dis-advantage of the orthogonal model:

(a) Unlike the parallel model in which 1ms o↵set feature is the same as

primary feature, In orthogonal model, we have to add a prism shaped

scattering screen to make it possible for us to observe 1ms o↵set feature.

(b) Hard to explain the displaced blob in the brightness image with big ✓?

at (RA=3mas, Dec=-10mas).

6.3.1 Summary

In summary, we think the orthogonal model could fit our observation better

than the parallel model. It has some distinct advantages over the parallel model,

such as the pulsar doesn’t need to be behind the center of the primary feature, or

it’s easy to explain the similarity of those two data sets. Although it still has some

disadvantages, there are still supporting explanations. The prism shaped screen is

necessary to explain why we can observe 1ms o↵set feature, it also helps explains

the frequency dependence of the o↵set feature. It does makes it harder to explain

the displaced blob in the brightness image with big ✓?, but it could be due to a

small prism or a displaced ’knot’ which is introduced in parallel model.

6.4 Further work

Firstly, in Chapter 3, sections 3.1 and 3.2 present two di↵erent models

(instantaneous and ensemble-averaging) and their theoretical relations for the sec-

ondary cross spectrum C(f
D

, ⌧, b) in Equations 3.33 and 3.60. We found inconsis-

tency in the Jacobians between those two models. This inconsistency goes back to

the formulation of the visibility from the scattered image in Equation 3.6. Equa-

tion 3.6 is introduced without explicit justification and all the problems come from

this point. We still haven’t resolved this inconsistency mathematically, this will
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be one of our our highest priorities to work on as further work.

Secondly, We still don’t have enough knowledge about the width of the

outer part of the primary feature. Figure 6.4 uses the assumption that outer part

has the same characteristic width ✓?p

= 1.3mas as the core brightness image. It

is a good estimation. However, when we calculate the higher delay area (> 0.05

ms) of secondary spectrum based on this model using method in section 3.4.2,

there is no clearly isolated reserved sub-arc, all reversed sub-arcs are smeared with

each other. It is possible that that the characteristic width of the outer part is

over-estimated, or this 2-D model based on a 2-D kolmogorov function modulated

with a function of ✓k is not accurate. An iterative method can be used to improve

the scattered brightness image in Figure 6.4 by calculating the secondary spec-

trum from this brightness distribution and compare with the observed secondary

spectrum.

Thirdly, interpretation of the scattered image in terms of the physical struc-

ture of the plasma would be much clearer if we could observe the same pulsar for

multiple times continuously using the same resolution and frequency, maybe every

few days, maybe every one week or two, then we might find out the continuous

movement of the plasma structure, similar as discussed in [21]. In their result,

there are four blobs in their secondary spectrum, and they moved toward the posi-

tive doppler along the main forward arc. With our image reconstruction technique,

we will see those blobs moving in the angular domain with more brightness and

position details, and it will also help us to determine the geometry model.

In the case of parallel geometry model, because the e↵ective velocity di-

rection basically points to the positive Dec axis, both the primary feature and

the 1ms o↵set feature will move out of the picture slowly. Once the center of

the primary feature moves away from the pulsar angular position, then the main

forward parabolic arc in the secondary spectrum will be shifted and become more

asymmetric. The 1ms feature in the secondary spectrum will move down a little
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bit in a parabolic track and then move up again in the positive doppler side.

In the case of orthogonal geometry model, the main forward parabolic arc

will stay, the individual reversed sub-arcs in the secondary spectrum will move

along the main forward arc toward the positive doppler direction. The 1ms feature

in the secondary spectrum will disappear if it’s only in a small region, but other

o↵set feature at di↵erent position with di↵erent prism angle might be able seen.

By observing the secondary spectrum using continuous observations will

definitely help us determine the plasma turbulence type. Although we are more

lean to the orthogonal model, but without the continuous observation, we can’t be

100% sure.

Last but not least we plan to test the two geometries using the scintillation

code developed by Coles et al. (1995) [50]. This tool simulates the electric field

of a wave after propagation through a random phase changing screen (typically

described by a homogeneous Kolmogorov spectrum). It includes the computation

of a dynamic spectrum of intensity. It will be modified to include an inhomogeneous

distribution of anisotropic turbulence and can simulate interferometric visibility.

By comparing this calculated secondary spectrum with observation it will help us

determine which plasma structural model fits our observation.
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