- Main
Novel molecular components involved in callose-mediated Arabidopsis defense against Salmonella enterica and Escherichia coli O157:H7
Published Web Location
https://doi.org/10.1186/s12870-019-2232-xAbstract
BACKGROUND:Food contamination with Salmonella enterica and enterohemorrhagic Escherichia coli is among the leading causes of foodborne illnesses worldwide and crop plants are associated with > 50% of the disease outbreaks. However, the mechanisms underlying the interaction of these human pathogens with plants remain elusive. In this study, we have explored plant resistance mechanisms against these enterobacteria and the plant pathogen Pseudomonas syringae pv. tomato (Pst) DC3118, as an opportunity to improve food safety. RESULTS:We found that S. enterica serovar Typhimurium (STm) transcriptionally modulates stress responses in Arabidopsis leaves, including induction of two hallmark processes of plant defense: ROS burst and cell wall modifications. Analyses of plants with a mutation in the potentially STm-induced gene EXO70H4 revealed that its encoded protein is required for stomatal defense against STm and E. coli O157:H7, but not against Pst DC3118. In the apoplast however, EXO70H4 is required for defense against STm and Pst DC3118, but not against E. coli O157:H7. Moreover, EXO70H4 is required for callose deposition, but had no function in ROS burst, triggered by all three bacteria. The salicylic acid (SA) signaling and biosynthesis proteins NPR1 and ICS1, respectively, were involved in stomatal and apoplastic defense, as well as callose deposition, against human and plant pathogens. CONCLUSIONS:The results show that EXO70H4 is involved in stomatal and apoplastic defenses in Arabidopsis and suggest that EXO70H4-mediated defense play a distinct role in guard cells and leaf mesophyll cells in a bacteria-dependent manner. Nonetheless, EXO70H4 contributes to callose deposition in response to both human and plant pathogens. NPR1 and ICS1, two proteins involved in the SA signaling pathway, are important to inhibit leaf internalization and apoplastic persistence of enterobacteria and proliferation of phytopathogens. These findings highlight the existence of unique and shared plant genetic components to fight off diverse bacterial pathogens providing specific targets for the prevention of foodborne diseases.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-