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ABSTRACT OF THE DISSERTATION

Principles Underlying Human Physical Prediction

by

Kevin A. Smith

Doctor of Philosophy in Psychology

University of California, San Diego, 2015

Professor Edward Vul, Chair

Our days are filled with instances of reasoning about the physics of the world, from

simple tasks such as stacking dishes in a way that keeps them stable, to life-and-death

decisions such as not crossing the street because we presume an oncoming car would

hit us if we did. Yet the process we use to make inferences about physical events is not

well understood. Here I argue that these interactions are based on a rich, approximately

accurate simulation of physical events, but we must account for uncertainty about the

current properties of objects in the world. In this thesis I investigate the structure of

this simulation process and how it relates to other facets of cognition, including (1)

demonstrating that the principles underlying interactions with the world are based on
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accurate physics, even if our explanations of those same principles are idiosyncratic and

erroneous, (2) mapping out the types of uncertainty that this process accounts for, and

demonstrating that the simulations themselves are therefore stochastic, and (3) explaining

how physical predictions are updated over time due to changing evidence from evolving

simulations. This provides a framework for understanding how people form and update

representations of both the current and future state of the world based on rich, structured,

probabilistic reasoning.
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1 Introduction

From simple tasks like knowing where a wrapper will land when we throw it

towards the trash can, to matters of life and death such as choosing not to cross the street

when we might be hit by a car, our day-to-day actions require predicting what will happen

next. Our continued survival is testament to the fact that the predictions we make about

how the world will unfold are relatively accurate.

One crucial component of our predictions is reasoning about physical events –

how objects will move about and interact over time. Physical reasoning underlies a wide

range of our abilities that allow us to interact with the world, from knowing how much

force to use to throw a ball to our friends, to judging whether a coffee cup perched on the

edge of a table will fall, to pouring tea from a full kettle into a cup without spilling. It

also supports a large range of other core human abilities – such as how we infer other

peoples’ goals by accounting for the physical constraints they are subject to when they

plan their actions (Gergely & Csibra, 2003), or how we identify objects based on their

physical relationships within a scene (Biederman, Mezzanotte, & Rabinowitz, 1982). Yet

despite the importance of physical reasoning in our lives, how we perform these tasks is

often mischaracterized or not well understood.

Prior research over the past 35 years has often characterized our understanding and

use of physical principles as deficient. Some theories claim that our physical reasoning

is based on a pre-Newtonian ‘impetus theory’ (e.g., McCloskey, 1983a), while other

1
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theories propose that we can only reason about one facet of physics at a time (e.g.,

Proffitt & Gilden, 1989), and yet others suggest that we can only account for qualitative

relationships between objects (e.g., Forbus, 1994). Due to this extensive research, an

underlying assumption about human physical reasoning is that it is ‘good enough’ for us

to function, but that our understanding of physics does not reflect the way that physics

works in reality.

More recently, however, evidence has been accumulating that suggests that human

physical reasoning is approximately correct, and that errors in our physical predictions

are a result of accounting for uncertainty about the state of the world – including object

locations, motions, and properties (Sanborn, Mansinghka, & Griffiths, 2013). According

to this hypothesis, termed the ‘noisy Newton’ theory of physical reasoning, people use an

‘approximate physics engine’ to run the world forward and propose hypothesized physical

outcomes (Battaglia, Hamrick, & Tenenbaum, 2013). While the broad framework of

this theory has been proposed, there are many outstanding questions about how this

physics engine functions: what physical rules does it use in the course of its simulations?

What sorts of uncertainty must it account for? How do we integrate information from

simulations when the world itself is changing?

In this thesis I will first reconcile the noisy Newton theory with the prior literature

on intuitive physics, and then describe how people use physical simulation to inform

their predictions about the future state of the world. In this chapter I provide a brief

history of theories about intuitive physics, and how they lead to the questions answered

in this thesis. In Chapter 2 I show that the dichotomy between classical and recent studies

of intuitive physics can be explained by task demands: when people interact with the

world their predictions are based on relatively accurate principles, but when they reason

explicitly about how the world should work, their conceptions are idiosyncratic and

often incorrect in the ways described in prior literature. In Chapter 3 I show that people



3

incorporate not just uncertainty about the location and motion of objects in their physical

predictions, but also consider uncertainty about more nuanced properties of objects – e.g.,

that a ball may not bounce cleanly off a wall because of imperfections in either the ball

or the wall. In Chapter 4 I demonstrate that the noisy Newton framework can explain not

just how people make singular predictions, but how those predictions evolve in real-time

by accumulating changing evidence from an approximate physics engine that is updated

as the world itself changes. Finally, in Chapter 5 I discuss how these experiments form

a framework for understanding physical reasoning, and possible future directions for

expanding this framework.

1.1 Prior research on ‘intuitive physics’

1.1.1 Psychological theories of intuitive physics

One of the earliest studies into the structure of physical reasoning found what was

at the time a very curious result: while a ball that exits a curved tube should travel in a

straight line (there is no longer any force from the tube to cause it to curve), a proportion

of people who are asked about this scenario believe that the ball will continue to move on

a curved path because it retains some of the curving motion from the tube (McCloskey,

Caramazza, & Green, 1980; McCloskey & Kohl, 1983). Continued research found a

number of additional errors that people make: for instance, we cannot accurately describe

the ballistic trajectory of an object (Caramazza, McCloskey, & Green, 1981; Hecht &

Bertamini, 2000), we incorrectly believe that an object dropped from a moving carrier

(e.g., dropping a pen while walking) will lose all forward velocity and fall straight down

(McCloskey, Washburn, & Felch, 1983), and we inaccurately claim that the water line

will tilt when we pour liquid from a glass (Howard, 1978; Hecht & Proffitt, 1995).

There have been a number of theories proposed to explain these errors in physical
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reasoning. The most well known of these theories, ‘impetus theory,’ suggests that human

physical knowledge is inaccurate, based on pre-Newtonian theories that involve concepts

such as impetus – the incorrect notion that forces must continuously be applied to keep

an object in motion (McCloskey, 1983a, 1983b; Kozhevnikov & Hegarty, 2001). While

this theory characterized the modal responses on many of the tasks used to elicit these

errors and generally followed the explanations that participants provided to support

their responses, it is not clear that impetus theory is a universal human default for

understanding physics. Even between scenarios that require reasoning about the same

physical principles, peoples’ explanations are inconsistent – people will respond in a way

that indicates impetus physics in one and accurate, Newtonian physics in another (e.g.,

determining the motion of a ball after it exits two curved tubes that differ only in terms

of the amount of curvature; problems 1 & 2 from McCloskey et al., 1980); this may be

because people can reason correctly about familiar instances, but use incorrect theories

when presented with unfamiliar or abstract problems (Catrambone, Jones, Jonides, &

Seifert, 1995; Kaiser, Jonides, & Alexander, 1986).

Others have proposed alternate theories to explain these errors in reasoning: that

we can only attend to a single physical dimension at a time (Proffitt & Gilden, 1989),

that we misrepresent the way that forces are imparted from one object to another (White,

2012), or that physical knowledge is combined ad-hoc from a collection of primitive

notions about object interactions (diSessa, 1993; Halloun & Hestenes, 1985). However,

all of these theories have a common thread: that human physical reasoning is at its core

based on erroneous principles or otherwise flawed.

1.1.2 Qualitative physics

At the same time that psychologists were discovering errors in human physical

reasoning, artificial intelligence researchers were attempting to build expert systems that
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could reason about physical events. This led to the development of ‘qualitative physics’

systems – systems that extract qualitative rather than quantitative information from a

scene (e.g., that a car is slowing down rather than that a car is decelerating at 5.2m/s2),

then apply rules based on those relations (Forbus, 1984; Gardin & Meltzer, 1989). These

qualitative descriptions represent a scene using information similar to peoples’ verbal

descriptions: the book is on the table, or the ball is in the box (Forbus, 1983). Because

these relationships are qualitative, they allow for easy abstraction – for instance, all

objects resting on tables will continue to remain stationary in the absence of forces.

Forbus and Gentner (1986) argue that this forms the foundation of intuitive human

conceptions about physics: we abstract specific rules (e.g., “books stay on tables”) from

our scene perception, then generate causal structures based on these facts (e.g., “books

would fall, but tables prevent them from falling to the floor”). Finally, we use analogical

reasoning to abstract across causes (e.g., “if object A is resting on object B, object B is

preventing object A from falling”). Note that this is a naı̈ve conception of physics: it

tells us that books have a natural tendency to fall that the table is preventing, not that the

table is pushing back with a force equal and opposite to gravity according to Newton’s

third law of motion. Nonetheless, this explanation is similar to human judgments – naı̈ve

subjects typically do not claim that the table is exerting any force on the book (Brown,

1994). Therefore, similar to the theories used to explain the errors in physical judgments,

the theory that peoples’ physical reasoning is based on qualitative principles suggests

that the rules that underly this reasoning are at best coarse approximations of accurate,

Newtonian physics.

However, qualitative physics systems have had mixed results in describing human

physical reasoning. In some domains qualitative reasoning can explain how people

conceptualize physical principles: for instance, answering descriptive questions about

simple scenes (Friedman & Forbus, 2009) or reasoning about containment (Davis, Marcus,
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& Chen, 2013). But explaining kinematics though qualitative reasoning has proven to be

problematic, since without quantitative measures of velocity and position there are not

clear ways to differentiate, for instance, whether a ball rolling up a hill will have enough

speed to go over the crest, or whether it will roll back down (Forbus, 1980). This has led

some to claim that the only way to represent kinematic relationships is to incorporate

some quantitative measures of the state of objects (Forbus, Nielsen, & Faltings, 1987).1

Thus, while qualitative reasoning may explain some aspects of human physical reasoning,

it is unlikely to be the only way that people conceptualize physics.

1.2 Simulation-based physical reasoning

For nearly a half century, many researchers have studied the process of ‘simula-

tion’ – constructing a mental representation of the world, then iteratively updating that

representation over time to understand how the world will evolve, even under counterfac-

tual assumptions (Kahneman & Tversky, 1981). This mental simulation process has been

hypothesized to underlie a wide range of human capabilities, including causal reasoning

(Wells & Gavanski, 1989), theory of mind (Gallese & Goldman, 1998), and language

comprehension (Zwaan, 2003; Bergen & Wheeler, 2010). But importantly for this thesis,

it has also been seen as the basis of many different types of physical reasoning.

1.2.1 Origins of physical simulation theory

Modern research into mental simulation began with a study which found that

when people determine whether two objects are the same or different shapes, their reaction

times grow linearly with the angle that one object would need to be rotated through to

1There have been attempts to represent kinematics as changes through qualitatively segmented space
(c.f., Cohn & Hazarika, 2001). However, this research typically focuses on the spatial representations and
often does not directly address the difficulties of kinematic descriptions.
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match the other (Shepard & Metzler, 1971), suggesting that people are mentally rotating

the shapes in the same way that they would physically rotate them to ensure they are

the same when aligned. Later work studied how this simulation process supported more

complex physical reasoning – for instance, how visuospatial abilities support the ability

to simulate pulley systems (Hegarty & Sims, 1994) or how people induce rules about

gear systems from their own mental simulations (Schwartz & Black, 1996).

While this set of research suggests that a proportion of physical reasoning is based

on dynamic simulations of visual imagery, it does not describe the rules of the simulations

that gave rise to this reasoning. Indeed, the research into the core rules of simulation is

contentious, with some claiming that they are based on incorrect principles, while others

find contrary evidence that simulation makes our physical judgments more accurate.

For instance, Kozhevnikov and Hegarty (2001) claim that the rules of simulation are

based on the same erroneous principles of ‘impetus physics.’ But this claim is based on

evidence from the ‘representational momentum’ literature that memory for the location

of objects is shifted based on the dynamics of impetus physics rather than Newtonian

physics (e.g., larger objects will be displaced downwards more than smaller objects

because gravity affects them more; Hubbard, 1997), and it is unclear whether these

representational momentum phenomena arise from the dynamics of objects rather than

perceptual biases (Kerzel, 2002). On the other hand, there is evidence that activating

mental imagery by asking people to view or imagine a scene in motion makes them rely

on more accurate physical principles than they would use for simple explanation (Frick,

Huber, Reips, & Krist, 2005; Kaiser, Proffitt, Whelan, & Hecht, 1992). Therefore it

remains an outstanding question of what rules are used to drive our mental simulations

of physical processes.
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1.2.2 The ‘noisy Newton’ theory

The most recent theory of physical reasoning starts from an alternate hypothesis –

not that human knowledge of physics is intrinsically flawed, but rather that it is a close

approximation of Newtonian mechanics. According to this theory, biases in physical

reasoning are instead the result of reasoning under uncertainty using prior information

about object properties. Hence, peoples’ reasoning is both noisy and based on Newtonian

mechanics – the ‘noisy Newton’ hypothesis.

The initial success of this theory was tying together two facets of peoples’ judg-

ments about colliding objects. First, when people observe two objects colliding and are

asked which of the two is heavier, they are biased by information that is irrelevant to

the task (the elasticity of the objects), leading many to argue that these judgments are

based on limited information and heuristics (Todd & Warren, 1982; Gilden & Proffitt,

1989). Second, when one object collides with another, the first object stops, and the

second moves, the first object is seen to have ‘caused’ the second object to move only

if the subsequent velocity falls within a limited range (Michotte, 1963). Though these

two judgments had previously been considered and explained separately, Sanborn et

al. (2013) explained peoples’ judgments across both domains using a single model of

physical reasoning. This model assumed that people used accurate, Newtonian reasoning

about collisions (in contrast to, e.g., Todd & Warren, 1982), though predicted that errors

and biases would arise as a result of initial uncertainty in both perception and knowledge

about the objects’ masses and elasticity.

However, it would be untenable to assume that people reason about physical

events by using equations from Newtonian mechanics to calculate the future positions

and velocities of objects. Newtonian equations work for problems involving two objects,

but despite centuries of work, physicists and mathematicians have not determined an

analytical method for calculating the future state of a system with three or more objects
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if those objects are allowed to collide with one another, and many consider this to be

impossible (Diacu, 1996).2 Instead, most modern computer physics engines ‘simulate’

physics in an iterative fashion, updating the state of the world and calculating the effect

of object interactions in brief time-steps (Millington, 2010). Crucially, these physics

engines are not exact, but instead require some approximation of how objects should

move between these time-steps.

This problem, combined with the prior simulation literature, led Battaglia et

al. (2013) to propose that people use an ‘intuitive physics engine’ to perform physical

reasoning in a fashion similar to a computer physics engine – determining how the future

will unfold by incrementally updating the world according to approximately accurate

physical principles. However, these simulations start with uncertainty about the current

state of the world, and thus the outcome of the simulations is necessarily probabilistic,

providing a range of potential futures that might occur. Battaglia et al. (2013) used this

framework to explain how people make judgments about a physical system that involves

a large number of objects and massively unconstrained types of collisions: whether and,

if so, how a tower of multiple, balanced blocks will fall.

This framework has since been extended to capture a range of human judgments,

e.g., how people integrate physical and perceptual information to judge the positioning of

an object (Scarfe & Glennerster, 2014), how people make causal judgments about objects

running into each other (Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2012), or how

people predict how fluids will splash around a container (Bates, Yildirim, Tenenbaum, &

Battaglia, 2015).

This theory at its core makes two strong claims about the process we use to

extrapolate the world forward: that our predictions of the future are created in an iterative

2Even analytical solutions of systems without collisions are wildly impractical due to the potentially
chaotic nature of these systems, requiring sums of millions of terms of a series for even a modicum of
accuracy over short time spans (Diacu, 1996).
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manner through simulation, and that the rules we use to iterate these simulations will

provide a good approximation of the future state of the world. The noisy Newton theory

therefore rules out certain sets of prediction processes.

For one, this precludes any cognitive process that can directly predict the state

of the world at an arbitrary future time without determining intermediate states. While

mathematicians have yet to find an algorithm that can do this at all (much less in a

reasonable time), it is entirely possible that the mind can approximately calculate the

future without simulation. However, without proof that this computation is in fact

possible, it is unclear how such a system might work.

Similarly, the noisy Newton theory claims that our rules for updating our simu-

lations approximate Newtonian mechanics. This claim is more contentious, with many

studies finding that that our understanding of physical rules is erroneous (e.g., McCloskey,

1983a; Kozhevnikov & Hegarty, 2001). It is therefore an open question of why these

studies find errors in physical reasoning if our physical simulation is at its core relatively

accurate.

However, even within the structure of the noisy Newton theory, there are a broad

class of processes that would satisfy these criteria (for instance, any reasonable computer

physics engine), and only a narrow subset of these can describe human cognition. Defin-

ing the exact simulation process that underlies human physical reasoning will therefore

require further research.

1.3 Defining the structure of physical simulation

This thesis aims to fill the largest gaps in our understanding of how we perform

physical reasoning. First, we must understand why prior studies have found that some-

times our physical reasoning is accurate and calibrated, and other times it is idiosyncratic
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and erroneous – when do we use noisy Newton simulations versus other methods of

reasoning? Next, we must define what is ‘noisy’ about the noisy Newton framework.

Prior research has suggested that our predictions are variable because of initial uncer-

tainty about the properties of objects, but has remained agnostic about whether the

physical dynamics we use to extrapolate motion are deterministic, or whether they are

themselves noisy and uncertain. Finally, we must understand how people use physical

simulation to make decisions about the world. The information gained from simulations

will necessarily fluctuate over time as the world provides new information, and therefore

it is important to understand how we aggregate information from simulations to provide

evidence for what might occur, and how that affects the timing of our decisions and

evolution of our beliefs over time.

1.3.1 When do we use accurate simulations? (Chapter 2)

The research into intuitive physics has two sets of disparate findings. On the one

hand research like Battaglia et al. (2013) finds that our physical judgments are based on

accurate principles, but on the other hand studies such as Caramazza et al. (1981) find

that our physical principles are clearly erroneous. One theory suggests that this is due

to differences in the types of physical principles studied: Battaglia et al. (2013) asked

people to judge stability and we have an accurate representation of that principle, while

Caramazza et al. (1981) asked people to make judgements about ballistic motion – a

concept that we do not have an accurate representation for (Marcus & Davis, 2013). If

this is true, then we cannot have an approximately accurate simulation engine driving

our physical predictions, but instead this suggests we rely on non-physical heuristics that

represent correct physical principles for only a narrow set of problems.

However, there is an alternate possibility: that on some tasks we use physical

simulation that is based on accurate principles, while on other tasks we use other cognitive
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systems for reasoning about physics. If this theory holds, then we can still have an

approximate physics engine, but we also have other methods for conceptualizing physical

principles. A core question of physical simulation is therefore which of these two theories

is correct, and if we do only sometimes use accurate simulation, when do we do so?

To test these theories, I turn to a task that has classically been demonstrated to

elicit errors in physical judgment: gauging the ballistic trajectory of a ball that has been

cut from a swinging pendulum (Caramazza et al., 1981). The errors that people make in

this task – both when drawing the predicted trajectory and in their explanations – have

been used as evidence that people hold ‘impetus physics’ beliefs (McCloskey, 1983a).

I show, however, that these errors are dependent on how people use these princi-

ples. When people interact with the pendulum system (by catching the ball in a bucket or

choosing to cut the pendulum string so that the ball hits a target), their predictions about

the trajectory of the ball can be explained by accurate physical mechanics and sensory

uncertainty, despite the fact that their responses to an identical task as in Caramazza et al.

(1981) display a range of physical errors. This suggests that the physical model we use

to determine our interactions with the world is based on approximately accurate physics,

but when we perform explicit reasoning about physical principles our theories can be

idiosyncratic and erroneous.

1.3.2 What is ‘noisy’ in the noisy Newton framework? (Chapter 3)

A central claim of the noisy Newton framework is that our predictions are influ-

enced by uncertainty about the world. Prior studies have suggested that our predictions

are noisy due to uncertainty about the initial properties of objects (such as location and

motion), but have made the simplifying assumption that the physical simulation itself

was deterministic and noiseless (Battaglia et al., 2013; Sanborn et al., 2013). However,

there are a priori unknowable features of the world that can influence the actual paths of
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objects: a gust of wind might push a thrown ball onto a different course, or a ball rolling

across a grass field might bounce upwards if it hits an unseen bump. If our simulations

are deterministic, then we may have systematic biases in our predictions due to the

inability to account for these unknowable events. To fully account for the variability in

real-world physical motion, we must use noisy dynamics to produce the same variability

in our simulations. It is therefore an empirical question of whether our simulations are

stochastic to account for this uncertainty – is our physics itself noisy, or just our initial

understanding of the world?

In this experiment, participants predicted the final location of a ball as it bounced

around a computerized table under a variety of conditions, and I found that peoples’

predictions can only be explained if their simulations include noise that accumulates

throughout extrapolation. This suggests that the ‘noise’ in the noisy Newton framework

comes both from initial uncertainty and from stochastic noise added to our simulations.

1.3.3 How do we integrate information from simulation over time?

(Chapter 4)

In a changing environment, our physical predictions should shift over time to

account for these changes. It is therefore important to understand how simulation

supports these evolving inferences: do we gradually update our predictions by integrating

old and new simulations, or do we refresh our predictions with an entirely new set of

simulations? Integrating evidence from simulations suggests that we can be biased by

our past predictions, but this process can also serve to stabilize our predictions over time

to ensure we are not biased by moment-to-moment changes in simulation.

In order to understand how predictions evolve over time, we must study the

process and timing of accumulating evidence from our simulations, which allows us to

predict not just which decision people will make when performing physical reasoning,
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but how fast they will make it and how their belief changes over time. In one study of this

process, Hamrick, Smith, Griffiths, and Vul (2015) found that in order to make a simple

dichotomous physical decision (“will this ball go through a hole in the wall or bounce off

if it continues its trajectory”) people produce a limited number of simulations until they

reach a certain level of net evidence in favor of one of the choices, and that this process

could explain the variability in peoples’ reaction times across a variety of conditions. But

this study looked at only a single decision, and therefore could not explain how beliefs

might shift in light of new evidence.

In the final experiment, I asked participants to watch a ball bouncing around a

computerized table and continuously predict which of two ‘targets’ the ball would reach

first – thereby getting a continuous measure of peoples decisions as they obtained new

information about the ball’s trajectory. I found that these predictions could be explained

if people were generating new evidence over time, and integrating that with evidence

from prior simulations to provide an updated belief about the future based on both past

and present simulations. This suggests a process that our internal physics engine uses to

provide us with regularly updated predictions about the future state of the world.

1.4 Conclusion

It is often argued the function of the brain is that of a ‘prediction machine’ (Clark,

2013), and that these predictions allow us to determine the consequences of our actions

and choose our behavior accordingly (Grush, 2004). But in order to appropriately plan

our actions, we need (relatively) accurate models that allow us to predict what will occur

in the future. Despite the seeming ease with which we consider future events, forming

accurate predictions requires both complex, structured knowledge about how the world

functions, and the ability to integrate the uncertainty that we hold about the current state
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of the world into these models. This thesis demonstrates that the internal models we use

for physical prediction accurately capture the rules of physics and robustly account for

many sources of uncertainty inherent in the world, yet are flexible enough to provide a

continuously updated view of what the future might hold.
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2 Radically different physical

intuitions in action and conception

Abstract

Does human behavior exploit deep and accurate knowledge about how the world

works, or does it rely on shallow and often inaccurate heuristics? This fundamental

question is rooted in a classic dichotomy in psychology: human intuitions about even

simple scenarios are poor, yet their behaviors can exceed the capabilities of even the

most advanced machines. Here we argue that this dichotomy is false: perceptually

guided interactions with moving objects are often accurately calibrated to physical laws,

while conceptual judgments about the same scenarios are inaccurate and variable. We

asked participants to both interact with and draw the path of objects in ballistic motion

and found that their interactions could be explained by accurate Newtonian inferences

under uncertainty, while their drawings were idiosyncratic and often incorrect. Our

results suggest that the contrast between rich and calibrated versus poor and idiosyncratic

patterns of reasoning do not exist between domains of knowledge, but rather between

domains of behavior.

20
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2.1 Introduction

Humans function remarkably well in varied, uncertain environments, but psy-

chological research has documented many dramatic failures of human reasoning: we

can walk over precarious terrain and stack dishes in elaborate arrangements in a drying

rack, but we have trouble explaining how gravity works in basic situations (Hecht &

Bertamini, 2000; McCloskey, Washburn, & Felch, 1983). Such discrepancies between

robust, effective behavior and dramatic errors in simple problems have fueled key debates

in behavioral economics (Camerer, 1987), communication (Piantadosi, Tily, & Gibson,

2011), reasoning (Tversky & Kahneman, 1983), and most recently in the domain of

intuitive physics (Marcus & Davis, 2013). Here we argue for a general resolution to

such tensions: implicit, perceptually guided interactions with the world draw on knowl-

edge that is adapted to our environment, while explicit conceptual tasks often rely on

idiosyncratic and error-prone patterns of reasoning. More broadly, we suggest that these

discrepancies are better explained by delineating between domains of behavior, rather

than domains of knowledge.

People are often grossly inaccurate in simple intuitive physics judgments such

as drawing future trajectories of an object in ballistic motion, dropped from a moving

platform, or released from a circular ramp (Caramazza, McCloskey, & Green, 1981;

McCloskey, Caramazza, & Green, 1980; McCloskey & Kohl, 1983; Proffitt & Gilden,

1989; Ranney, 1994), but when people predict trajectories of billiard balls, estimate

properties of colliding objects, or judge the stability of towers, their physical reasoning is

often very accurate and consistent with the principles of Newtonian mechanics (Battaglia,

Hamrick, & Tenenbaum, 2013; Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2012;

Sanborn, Mansinghka, & Griffiths, 2013; Smith & Vul, 2013). Prior literature has

attempted to explain this discrepancy by suggesting that some human knowledge of
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physical principles is accurate, while other knowledge is erroneous (e.g., people can

estimate the stability of stacked objects, but have erroneous conceptions of ballistic

motion; Marcus & Davis, 2013). However, the studies that suggest human physics

knowledge is inaccurate differ from those that suggest it is correct not only in the type

of knowledge probed, but also in how they elicit behavior: studies that demonstrate

failures of physical knowledge tend to rely on explicit queries about physical mechanisms

(e.g., diSessa, 1993; McCloskey et al., 1980; Shanon, 1976), while studies that show

accurate knowledge tend to require people to use physical principles as they would in their

normal interactions with the environment (e.g., Battaglia et al., 2013). Differences might

therefore be due to the types of tasks or behaviors rather than they types of knowledge

required.

We test whether participants’ behavior might differ between tasks that rely on the

same physical principle using the classically-studied test-case of judging the ballistic

trajectory of a ball released from a pendulum after the cord has been cut. In Experiment

1, participants each performed three distinct tasks: one explicit, conceptual task, drawing,

and two interactive tasks, catching and releasing. The drawing task replicated a classic

failure of intuitive physics in which participants were shown static pictures of pendulums

and asked to draw the path that a ball would take if the cord were cut at various points

(Caramazza et al., 1981). In the catching and releasing tasks participants observed a

pendulum in motion and were asked either to position a bucket to catch the ball once

the pendulum cord were cut by a ‘knife’ or release the ball from the pendulum so that it

would be projected into a fixed bucket. All three of these tasks entailed solving the same

physical problem – extrapolating the ballistic trajectory of a pendulum bob after the cord

has been cut – so the systematic differences between human judgments in each task could

arise only from the structure of the task itself, rather than differences in the underlying

physical principles. We find that while peoples’ explicit reasoning about such scenarios
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reveals erroneous and inconsistent behavior, their interactions with these systems are

consistent with the ‘noisy Newton’ hypothesis (Battaglia et al., 2013; Sanborn et al.,

2013; Smith & Vul, 2013) which holds that people form physical inferences by computing

the effects of accurate Newtonian principles under uncertainty.

In Experiment 2, we evaluated whether the differences between the interactive

and conceptual tasks was due to the tasks themselves, or differences in their respective

stimulus presentations. In the interactive tasks, participants observed the pendulum in

motion, but in the drawing task participants only observed a diagram of a pendulum on a

sheet of paper. Because observing motion has been found to improve physical reasoning

in conceptual tasks (Kaiser, Proffitt, & Anderson, 1985; Kaiser, Proffitt, Whelan, &

Hecht, 1992), we investigated whether participants would demonstrate accurate physical

knowledge on the drawing task only in the presence of pendulum motion. Although par-

ticipants’ judgments were different after observing motion, we find that these differences

were driven by additional information about the velocity of the pendulum ball, but found

no evidence that people used different, more accurate physical principles when they had

access to richer stimulus information.

Together, these results suggest that peoples’ knowledge of physics differs not by

domain of knowledge, but rather depending on the domain of their behavior.
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2.2 Experiment 1: Difference between interaction and

conception

2.2.1 Methods

Participants

Thirty-five UC San Diego undergraduates (with normal or corrected vision)

participated in this experiment for course credit. All participants gave informed consent

to participate in accordance with guidelines set by the UC San Diego Institutional

Review Board. Participants were collected over a span of two weeks, and the number

of participants was deemed appropriate before analysis based on pilot work (Smith,

Battaglia, & Vul, 2013). Three participants were removed from analysis because their

performance indicated that they were often responding randomly (see Appendix, Figure

A.1 for details).

Procedure

Participants performed three blocked tasks that involved predicting the ballistic

trajectory of a ball released from a pendulum: interactive cutting, interactive releasing,

and explicit drawing. Participants always performed the drawing task after the interactive

tasks, but the order of the interactive tasks was randomized across participants.

In the interactive tasks, participants viewed a computer monitor from a distance

of approximately 60 cm, which initially depicted a ball swinging from a cord, consistent

with pendulum motion. At some point in time the cord would be cut and the ball would

be released, thus entering ballistic motion. Beneath the pendulum there was always a

bucket, and in every trial the participant’s goal was to get the ball to drop into the bucket

after being released. How they were allowed to interact with the scene differed between
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two tasks: catching and releasing. With the exception of one initial practice trial per

task that familiarized participants with the task, the path of the falling ball was occluded

in order to prevent participants from learning a simple relationship between the ball’s

release position and its landing position. At the end of each trial, participants were given

binary feedback that indicated whether or not the ball successfully landed in the bucket

(we found no evidence of learning from this feedback; see Appendix, Section A.2.3). A

success would earn participants a point, and each participant’s score was totaled across

all trials; however, this score was used solely as motivation to engage with the task and

did not influence any of our analyses.

Catching task. Participants were instructed to adjust the bucket’s horizontal

position using the mouse so that the ball would land in the bucket after being released.

The release time was pre-determined and varied across trials. Participants were notified

of where the cord would be cut by an icon of a knife, which would darken when the cord

was about to be cut. The center of the bucket was recorded as the participant’s judgment

about where the ball would land (Figure 2.1, top).

Releasing task. The bucket was held fixed at a pre-determined position and

participants were instructed to cut the pendulum cord by clicking the mouse at a time

that would cause the ball to drop into the bucket. Cutting the cord was not allowed for

an initial period of time randomly determined between 1.2-3.6s to avoid biases from

participants who would attempt to cut the cord as quickly as possible. The time at which

the cord was cut was recorded for each trial (Figure 2.1, bottom.)

For each of the two interactive tasks, participants repeated 48 different trials five

times each in a randomized order. Trials were matched across tasks such that where the

ball landed in a catching trial was the bucket position in the matched releasing trial. In the

catching task, there were 16 distinct release times, crossed with three vertical distances

between the nadir of the pendulum and position of the bucket either 20, 35 or 50% of
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Figure 2.1: Diagram of trials in the catching (top) and releasing (bottom) trials. Catch-
ing: A. Participants observe a ball swinging on a pendulum and the ‘knife’ that will cut
the cord. They move the bucket horizontally with the mouse. B. When the cord is cut,
the trajectory of the ball is obscured. C. Binary feedback is provided after each trial.
Releasing: D. Participants observe the ball on the pendulum. The coloring of the ball
indicates a timer, such that once the red color is gone, participants can click the mouse
to release the ball from the cord. E. The trajectory of the released ball is obscured. F.
Binary feedback is provided.
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the total screen height.

Both tasks and all trials used the same pendulum. This pendulum had a length

of half of the screen, and reached a maximum angle of 35 degrees from vertical at its

zenith. The period (2.5s) and force of gravity were set to obey Newtonian mechanics as

if the pendulum were positioned at a depth of 6m from the participants. This depth was

selected to conform to participants’ general expectations about the natural period of the

pendulum as seen on the 2D computer screen used in the experiment. To determine the

motion of the pendulum, the cord was assumed to have negligible mass as compared to

the ball, and so we could use simplified physical models to calculate the position of the

pendulum at any point in time.

Drawing task. After the two interactive computer-based tasks, participants were

given a two-page packet to fill out. On the first page was the drawing task – a set of

four diagrams depicting pendulums at different points in their swings. Participants were

asked to draw the path that the ball would take if the cord were cut at the time depicted

in the diagram (Figure 2.2). On the second page was a brief survey that asked about

the participant’s number of prior physics courses and strategies used in the experiment.

These questions were reviewed to check whether participants were responding based on

surface-level features or using other strategies that did not involve prediction – however,

we did not find evidence of this.

Drawings were classified into one of eleven patterns that were either drawing

classifications from Caramazza et al. (1981) or were observed in a pilot experiment.

Three undergraduate research assistants from both UCSD and MIT who were nave to

the hypothesis performed this classification independently, and were told to match each

participant’s drawings to one of the given patterns as best as they were able, or rate the

participant as unclassifiable if there were no matching pattern. A participant’s drawing

was considered matching a pattern if at least two of the three raters agreed; if all raters
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Figure 2.2: Handout provided to participants for the drawing task. Instructions and
stimuli were based on Caramazza et al. (1981).

disagreed, the participant’s drawings were considered unclassifiable. There was high

inter-rater reliability (Fleiss’ κ = 0.736), and all three raters agreed on the classification

for 23 of the 32 participants.

In addition to rating the drawings, we translated the drawing predictions to be

comparable with the catching and releasing results by determining where participants

would position the bucket in the catching task if their predictions were based on the

drawing predictions. To perform this translation, we first fit either linear or quadratic

functions through the ball and the lines participants drew.1 The first author and three

1We could not simply determine where the drawn predictions crossed the line of each bucket height,
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research assistants at UCSD marked on each drawing at least five points that accurately

described the line (producing on average 54 points per drawing). We then fit two lines –

linear and quadratic – through those points using least squares estimation. The quadratic

fit was used for extrapolation unless either it had a positive quadratic term (implying the

ball would move upwards), or the average distance between each point and the linear

line was less than 1/8th cm more than the average distance from the quadratic line. In

this way we allowed for curved drawings when appropriate but prevented inappropriate

curvature that could bias results when the drawing itself was mostly linear. We then

recorded where that extrapolated line crossed each of the three bucket heights, producing

three ‘pseudo-catching’ results per drawing – this yielded 12 results per participant.

Models of physical reasoning

Even if people are using accurate physical principles to make predictions, un-

certainty about the location or motion of objects can cause biases in the predictions

themselves (Battaglia et al., 2013; Sanborn et al., 2013; Smith & Vul, 2013). There-

fore, to test whether participants were using accurate physical principles, we designed a

noisy Newton model to determine how people would behave if they were basing their

predictions on Newtonian mechanics perturbed by uncertainty about the location of the

pendulum and accumulated noise in the trajectory of the ball throughout extrapolation

(Smith & Vul, 2013).

We split this model into two parts: the predictive forward model, and the task

action. The predictive forward model describes how a trajectory is extrapolated, and thus

the physical understanding presumed under the model – where the ball will go when

cut from the cord; the forward model is a set of rules shared across the catching and

releasing tasks. The task action determines how those predictions are used to position the

since many drawings did not extend that far or ended at the left or right side of the drawing area. Therefore,
we used a common extrapolation technique for all drawings.
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bucket or choose when to cut the cord, after incorporating noise/uncertainty from either

accumulated prediction errors or motor control; these task actions differed across the two

interactive tasks.

In addition to testing whether participants’ predictions could be explained by noisy

Newton reasoning, we also considered whether predictions could be better explained by

alternate, non-physical reasoning. To test these non-physical accounts, we compared

variants with different non-physical forward models against one another; the task actions,

however, stayed constant between models.

Noisy Newton forward model. The noisy Newton physical forward model

assumes that people have an accurate knowledge of the laws of ballistic dynamics. To

predict where the ball will land, the model uses Newtonian ballistic motion equations to

extrapolate the path of the ball given its position and velocity at the moment of release.

Although we assumed people have good knowledge of the laws underlying the

pendulum system, we also assumed participants were uncertain about the distance of the

pendulum in depth from the observer – a necessary assumption since the 2D image of a

pendulum on a computer screen is not interpreted as a physical pendulum literally at the

depth of the computer screen. There is a lawful relationship between pendulum period,

cord length, and the force of gravity that people are sensitive to (Pittenger, 1985), and

participants directly observe the period of the pendulum and are assumed to have a sense

of realistic Earth gravity (McIntyre, Zago, Berthoz, & Lacquaniti, 2001). But because

the pendulum was presented on a computer screen with no depth cues, people must infer

how far behind the screen they expect the pendulum to be positioned, and therefore the

length of the pendulum cord.

Non-physical forward models. Despite the body of literature studying the phys-

ical misconceptions that people hold, there is a dearth of formalized models about how

people might understand ballistic motion; most research instead focused on conceptual
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descriptions of how gravity influences falling objects (Shanon, 1976) or how objects

accelerate during their trajectory (Hecht & Bertamini, 2000). While Zago et al. (2004)

suggest that people fail to account for gravitational acceleration in prediction, this only

implies that non-physical models should predict that the ball travel in a straight line, but

not the direction in which it is released. We therefore assumed that the extrapolations

might be similar to those made on an explicit task, and formalized alternate forward

models that could capture the same patterns participants made on the drawing task to test

whether these patterns would be extended into the catching and releasing tasks. Each of

the non-physical drawings could be captured by extrapolating the ball’s path in a straight

line at an angle away from the vertical; however, the calculation of that angle varied by

model (see Figure 2.3).2

We tested three non-physical models: angled, outward, and straight down. The

angled forward model calculated the ball angle as a piecewise linear function of the

angle that the pendulum formed with its vertical at release, allowing for differences in

trajectory on the downswing compared to the upswing. The outward model assumed that

the ball would continue along the path of the cord, but allowed for the angle to shift upon

release. Finally, the straight down model simply assumed that the ball would drop upon

release.

Task actions. The forward models provide a single deterministic prediction of

where the ball will travel given that the cord is cut in a certain position, but people must

use this information to interact with the task, specifically choosing where to place the

bucket in the catching task or when to cut the cord in the releasing task.

In the catching task, participants observed where the ball was cut from the

cord, and were required to predict where it would land. This model captured human

2Non-linear extrapolated trajectories, such as adding a quadratic term to the path, would make these
non-physical models equivalent to a physical model of a parabolic ballistic trajectory; thus only linear
extrapolation paths are guaranteed to differ from physical extrapolation.
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Figure 2.3: Diagrams of the forward model predictions for the path of the ball at four
different cut points along the pendulum, using best fitting parameters. Ground truth is
the path of the ball that was used to determine a successful catch in the experiment. See
the Appendix, Section A.1 for mathematical formulations of each model.

performance by using the forward model to determine where the ball should go given its

release, and assumed that this would be the average location that participants would place

the bucket. However, participants’ responses were variable, and the model must capture

this. Noise in tasks that require catching a hidden falling object includes both predictive

and motor uncertainty (Faisal & Wolpert, 2009), both of which were modeled together

as Gaussian noise around the predicted position. Since prediction error accumulates

throughout the path, the model’s uncertainty increases linearly with the vertical distance

between the bucket and the release height of the ball.

In the releasing task, participants needed to solve the inverse problem from the

catching task: given a specific landing position, where in the pendulum period should

the ball be when the cord is cut? We assume that people always have a reasonable

sense of where the ball will go if released at each point in time. Assuming that motor

errors are symmetric in time (Dawson, 1988), the optimal time to release the ball would

be the middle of any contiguous period in which the ball would land in the bucket. If

there were two contiguous periods of success,3 we assumed that participants would be

3For instance, if the bucket were directly below the center of the pendulum, there are two periods when
the ball could be released: when it is to the left of the bucket and traveling rightward, or when it is to the
right of the bucket and traveling leftward.
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Figure 2.4: Illustration of the noisy Newton account of human judgments in the catching
and releasing tasks. (A) Participants estimate the physical depth (and thus length) of
the pendulum given its 2D projection and use this to guide both catching and releasing
behavior. (B) In the catching task, participants see where the cord will be cut, generate
noisy projections about where the trajectory of the ball will cross the plane of the bucket,
and move the bucket into that region (red color mapping indicates higher probability of
placing the bucket around that point). (C) In the releasing task, participants must choose
when to cut the cord, so they project the ball’s trajectory if released from different points
spanning the pendulums’ period, and choose a time to cut the cord that will make it
probable that the ball lands in the fixed bucket given their motor timing error (red areas
represent pendulum locations that are more likely to be selected as the release point).

probabilistically more likely to choose the release point with the shorter vertical distance

between the ball and the bucket, as we share the assumption from the catching task that

uncertainty accumulates over vertical distance. Finally, once the model chooses the time

point that it aims to cut, its actual release time for a trial was perturbed by Gaussian noise

to reflect the motor errors that people make.

2.2.2 Results

Consistency and accuracy of predictions

Participants’ predictions in both of the interactive tasks were remarkably consis-

tent with the noisy Newton model (catching: r = 0.988, releasing: r = 0.998, see Figure

2.5: Noisy Newton). Participants’ drawings, however not only failed to capture veridical

physical principles (only 6% of participants drew trajectories consistent with Newtonian
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physics; Figure 2.5: Drawing), but were also inconsistent from person to person (no more

than 22% of participants were classifiable into a single category of response patterns).

This drawing variability mirrors behavioral variability in other purely conceptual physical

tasks (Caramazza et al., 1981; Kaiser, Proffitt, & McCloskey, 1985; Proffitt, Kaiser, &

Whelan, 1990). If we extrapolate how participants would catch the ball based on their

drawings, we find large variability in how well each participant’s errors correlates with all

other participants’ errors (mean r = 0.29, 10-90% quantiles =[−0.66,0.89]; see Figure

S2). In contrast, individual participants’ errors were much more consistently correlated

with each other on both the catching (mean r = 0.76, 10-90% quantiles =[0.47,0.91]) and

releasing tasks (mean r = 0.53, 10-90% quantiles =[0.33,0.64], see Figure S2). These

results suggest that behavior in interactive tasks is consistent across participants because

it is calibrated to the physical world, while drawing behavior is not driven by physi-

cal principles and thus varies in ways that primarily reflect participants’ idiosyncratic,

explicit reasoning strategies.

The fit between human judgments and the noisy Newton model depends cru-

cially on peoples’ ability to reason effectively under uncertainty. Although participants’

judgments were correlated with “ground truth” answers – responses under which the

ball always landed in the center of the bucket (catching: r = 0.969, cutting: r = 0.989),

judgments were systematically biased relative to ground truth (Figure 2.5: Ground Truth).

Moreover, these systematic biases were different between the catching and releasing

tasks (error correlation across matched trials: r = 0.35). These unique task biases are

expected under the noisy Newton model because each task reflects different sources of

uncertainty subjected to the same non-linear transformation via Newtonian kinematics;

and indeed these systematic deviations of participants’ judgments from the ground truth

model matched the deviations of the noisy Newton model (catching: r = 0.92, releasing:

r = 0.93). By capturing these systematic biases, the noisy Newton model correlated better
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Figure 2.5: Left: The bias and variance of participants’ average performance on the
interactive (catching and releasing) tasks is better captured by the noisy Newton model
than ground truth or the angled non-physical model. Each point represents one of 48
unique trials in either the catching or releasing tasks. On the x-axis are model predictions
(in cm from the center of the screen) about the position of the bucket (catching) or
the landing position of the ball if released at the predicted time (releasing), while the
y-axis represents the average bucket (catching) or landing position (releasing) across all
participants for that trial. Right: Classification of responses on the drawing task. Few
(6%) participants drew accurate paths for all four diagrams (classification i), suggesting
that most participants lack explicit knowledge of the physical principles underlying this
task.
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with participants’ behavior than ground truth (catching: z = 2.26, p = 0.02, releasing:

z = 4.28, p < .001). This suggests that apparent biases in implicit physical judgments

reflect sophisticated patterns of probabilistic reasoning through an accurate physical

model.

Behavior on the catching and releasing tasks also shows that people use accurate

physical principles rather than incorrect, heuristic approximations. The noisy Newton

model explained participants’ catching and releasing responses better than any of the

alternative forward models (angled: ∆BIC = 2,981; outward: ∆BIC = 14,435; straight-

down: ∆BIC = 14,698; see Figure 2.6), suggesting that participants were not typically

using a non-Newtonian heuristic to extrapolate the ball’s motion.

Individual physical knowledge

To test whether each participant was individually using Newtonian prediction,

rather than such behavior arising only in the across-subject aggregate, we determined

which of the noisy Newton and three heuristic models best described the behavior of

each participant. Of the 32 participants, 28 (88%) were best fit by the Noisy Newton

model, and 4 (12%) by non-physical models. Moreover, none of the four participants

with non-Newtonian catching and releasing behavior had drawn extrapolated trajectories

consistent with the heuristic model that best captured their interactive task behavior (see

Table 2.1). These results suggest that the population does not contain subsets who have

universally incorrect knowledge of physics across cognitive domains. Instead, when

interacting with physical scenes, people share a common system of physical knowledge,

calibrated with the world, while their deliberate judgments are guided by idiosyncratic

and often non-Newtonian heuristics such as “conceptualiz[ing] an event’s outcome in a

representational context” (Kaiser, Proffitt, & McCloskey, 1985).
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Figure 2.6: Fits of each model to human catching and releasing behavior. The noisy
Newton model explains participants behavior better than any of the heuristic models.
Log-likelihood above chance is the difference of the log-likelihoods of each of the
models from the log-likelihood of a random response model. Maximum possible fit is
the log-likelihood of predicting behavior as well as possible from the behavior of other
participants. Error bars are 95% confidence intervals, calculated from 500 bootstrapped
samples each.

Table 2.1: Individual best fitting model vs. classification on drawing task. Roman
numerals refer to the drawing type classification from Figure 2.4. No participant was
best fit by a non-physical model that could capture his or her drawing classification.

Model Fit
Newtonian Angled Outward Down

Drawing Newtonian (i, ii) 6 1 0 0
Task Angled (iii, iv, v) 12 0 0 0

Outward (vi) 1 1 0 0
Down (vii) 1 0 0 0

Unclassified 8 1 1 0



38

2.3 Experiment 2: The impact of stimulus richness on

physical knowledge

We found in Experiment 1 that interactive tasks tapped into relatively accurate

models of physical reasoning, while participants relied on idiosyncratic, erroneous phys-

ical reasoning to solve conceptual tasks. However, the tasks in Experiment 1 differed

not just in the way that we queried participants’ knowledge, but also in the informa-

tion available to participants to perform the tasks: in the catching and releasing tasks,

participants observed the pendulum in motion, while in the drawing task participants

were given a sheet of paper displaying a static pendulum. Prior work has suggested that

viewing moving stimuli can produce more accurate physical judgments (Kaiser, Proffitt,

& Anderson, 1985; Kaiser et al., 1992). However, these experiments introduce motion

not just by showing the stimulus in motion before prediction (e.g., the pendulum in

motion), but also query participants’ judgments by showing various potential motion

trajectories and ask participants to choose which is the most natural. Therefore it is

not clear whether it is the initial motion information or the naturalness judgment that

produces more accurate judgments. To tease these possibilities apart, we test how people

perform the drawing task with a moving pendulum to determine whether participants

with motion information would rely on more accurate physical principles. Although

showing moving pendulums does change the predictions that people make on the drawing

task, these changes are not due to people using more accurate physical principles but

rather from making different inferences about the velocity of the ball at the moment the

pendulum string is cut. Furthermore, participants who observed a moving pendulum

produced more variable motion paths than those who judged only a static pendulum,

suggesting that motion may make these explicit judgments less accurate.
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2.3.1 Methods

Participants

Sixty-seven UC San Diego undergraduates (with normal or corrected vision)

participated in this experiment as part of a set of experiments for course credit. All

participants gave informed consent to participate in accordance with guidelines set by the

UC San Diego Institutional Review Board. We collected data until we had approximately

twice the number of participants from the original task. Participants were randomly

assigned to the Motion or Static conditions, resulting in 33 participants in the Motion

condition and 34 participants in the Static condition.

Procedure

Participants were instructed that they would need to judge the path of a ball

that is cut from a pendulum, and that they would indicate the ball’s predicted path by

clicking and dragging the mouse. Participants in the Motion condition observed the

pendulum make one full swing then swing to the point where the string would be cut,

while participants in the Static condition observed only the final position of the pendulum

as the string is cut; therefore participants in both conditions observed identical images

immediately before being asked to respond. The pendulum used here was identical to

the pendulum used in the Catching and Releasing tasks, with the same arc and, for the

Motion condition, the same period.

Participants indicated their predictions by clicking and dragging along the path

they believed the ball would travel. To ensure that we captured paths of appropriate

length, these paths were required to (a) start from within the image of the ball and (b)

terminate within 10% of the edge of the lower half of the screen; if the path did not

meet these criteria, participants were notified and asked to draw the path again. Finally,
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participants would be asked to either confirm their path, or click a ‘Try Again’ button to

re-draw it (see Figure 2.7: top).

All participants drew their predictions for the same four release points measured

in the Drawing part of Experiment 1; the order of presentation was randomized across

participants. For each drawing, we recorded each point along which participants dragged

the mouse, measured every 20ms, from which we could reproduce the drawn path.

Rating

As with the Drawing task of Experiment 1, we asked three undergraduate raters

from UCSD to classify each participant’s drawings. Because we hoped to test how

judgments varied in detail, we asked the raters to judge the predictions individually by

stimulus, rather than the pattern of predictions across all four stimuli. Raters classified

each drawing into one of six types (see Figure 2.7: bottom), or judged an individual

drawing to be unclassifiable. Raters were blind to which participant created each stimulus

and to whether they were in the Motion or Static condition.

Inter-rater reliability was lower than the reliability from Experiment 1 (Fleiss’

κ = 0.596), but this effect was driven by one rater who had a higher threshold for

classifying drawings (rating 42% of drawings as unclassifiable). Reliability where this

rater classified drawings was very high (Fleiss’ κ = 0.826), and on the stimuli she

determined to be unclassifiable the other two raters agreed on a classification 79% of the

time. Similar to Experiment 1, we classified each drawing as the majority classification

of the raters, but if all three raters disagreed, we noted the drawing as unclassifiable (this

was only true of 5% of the drawings).
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Figure 2.7: Top: Diagram of a trial. A: participants in the Motion condition only
observed the pendulum swing through one full period, then swing to the final position.
B: participants in both conditions would observe a static image of the pendulum string
cut at one of four positions. C: participants click and drag the mouse to indicate their
predictions for the balls motion. Bottom: The six potential paths raters could classify
each drawing as (not including unclassified). All of the patterns from Experiment 1 or
Caramazza et al. (1981) could be recreated from a combination of these path types.
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2.3.2 Results

We first tested whether there was evidence of differences in participants’ predic-

tions due to motion evidence for each pendulum cut point. If motion information does

not affect physical reasoning, then we should expect no difference between participants’

predictions in the Motion and Static conditions. On the other hand, if motion information

causes people to use accurate models of physics, then participants in the Motion condition

should make different predictions from those in the Static condition, and should draw

more curved paths to indicate the appropriate influence of gravity on the ball’s ballistic

trajectory.

We did find evidence that participants’ drawings differed between the two con-

ditions in for both the Apex (χ2 = 13.4, psim = 0.014) and the Nadir (χ2 = 10.7, psim =

0.035) pendulums, but not in the Downswing (χ2 = 2.4, psim = 0.71) or Upswing

(χ2 = 8.3, psim = 0.14) stimuli. The differences in Apex predictions appear to be driven

by participants with motion information believing that the ball retains leftward velocity,

while participants without motion information tend to believe the ball will drop (the

correct answer) or travel to the right. The difference in Nadir predictions are driven by

participants without motion information indicating that the ball will drop straight down,

while participants with motion information realize that the ball retains horizontal velocity

(see Table 2).

Although there is evidence that motion does influence peoples’ predictions, there

is no evidence that it causes them to use more accurate physical principles for those

predictions. For the Downswing, Nadir, and Upswing stimuli, there was no evidence

that participants in either condition drew the correct ball path at different rates (path 5

from Figure 7; all χ2 < 0.5, all psim > 0.5). There was a difference in accuracy with

the Apex condition, but it was participants in the Static condition who were more likely

to be correct (24% vs. 6%; χ2 = 4.4, psim = 0.043). Thus pendulum motion provides
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Table 2.2: Classification of participants drawings, split by pendulum cut point and
experimental condition. The veridical response was 5 in all cases except the Apex,
where the veridical response was 3. Patterns of responses between the Static and
Motion conditions differ in the Apex and Nadir scenarios based on differences in how
participants interpret the ball’s velocity, but there is no evidence that the physical
principles used differ between conditions.

1 2 3 4 5 6

U
nc

la
ss

ifi
ed

Apex Static 5 1 8 10 1 0 8
Motion 10 9 2 5 1 0 7

Downswing Static 0 2 2 18 7 0 6
Motion 0 2 0 19 7 0 4

Nadir Static 1 1 13 7 7 0 8
Motion 0 0 5 16 5 0 4

Upswing Static 0 7 1 8 8 3 6
Motion 0 0 2 10 10 5 6

different information about the ball’s velocity, but this information can be misleading

(e.g., indicating the ball retains velocity at the apex) and does not cause people to produce

more correct parabolic paths.

Consistency of Static and Motion predictions

We extrapolated the drawings in the same way as Experiment 1 as a separate test

of how consistent the Motion and Static predictions were (see Section 2.2.1 – Drawing

Task).4 If participants were using qualitatively different reasoning between the two

conditions, then individual predictions from the Motion condition should correlate better

with the average of others from the Motion condition than with those from the Static

condition, and vice versa.
4Because we captured points along the drawn line as part of the task, we did not have third parties mark

each drawing, but the technique for extrapolating lines from the drawn points was identical.



44

Similar to Experiment 1, participants drawing errors were not well correlated with

the average errors from all other participants and were extremely variable (mean r = 0.29,

10-90% quantiles =[−0.62,0.89]). However, this did vary as a function of condition:

extrapolated drawings from the Static condition were more correlated with other Static

extrapolations than Motion extrapolations (Static: mean r = 0.50, 10-90% quantiles

=[−0.13,0.89]; Motion: mean r = 0.02, 10-90% quantiles =[−0.39,0.47]), while the

Motion extrapolations were somewhat more similar to other Motion extrapolations than

Static (Static: mean r = 0.07, 10-90% quantiles =[−0.78,0.94]; Motion: mean r = 0.16,

10-90% quantiles =[−0.40,0.65]).

However, this effect was driven almost exclusively by differences in prediction

for the Nadir cut point; excluding this stimulus, participants in the Static condition

were equally well correlated with the average extrapolations in both conditions (Static:

mean r = 0.45, 10-90% quantiles =[−0.49,0.91]; Motion: mean r = 0.42, 10-90%

quantiles =[−0.12,0.87]), as were participants in the Motion condition (Static: mean

r = 0.17, 10-90% quantiles =[−0.80,0.95]; Motion: mean r = 0.22, 10-90% quantiles

=[−0.67,0.81]).

This provides further evidence that seeing the pendulum in motion provides

additional information about the velocity of the ball at the moment that the string is

cut, but does not make the physical principles that underlie the motion extrapolation

any more accurate. In fact, the lower correlations and higher variability of the Motion

extrapolations suggests that if anything, observing motion makes predictions even more

variable and therefore less veridical.
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2.4 Discussion

In two experiments we asked people to make physical judgments in several differ-

ent tasks, all of which depended on identical underlying physical principles. Participants

were surprisingly accurate for perceptually guided interactions, but idiosyncratic and

inaccurate for explicit, conceptually based responses. In Experiment 1, participants

demonstrated accurate use of physical principles about ballistic motion when interacting

with a scene, but those same participants were often erroneous when asked to conceptual-

ize the same principle by drawing an object’s trajectory. In Experiment 2, participants

continued to use erroneous physical principles on conceptual tasks, even with richer, less

abstract stimulus information.

These findings mirror a broader pattern of results in the psychological literature:

peoples’ behavior differs between conceptual and perceptual-motor tasks (Chen, Ross, &

Murphy, 2014; Glaser, Trommershäuser, Mamassian, & Maloney, 2012; Wu, Delgado,

& Maloney, 2009). Some behavior, especially in lower level perceptual and motor

domains, is near optimal given the information and processing constraints associated

with a particular task (Griffiths & Tenenbaum, 2006; Stocker & Simoncelli, 2006;

Trommershäuser, Landy, & Maloney, 2006; Wolpert, Ghahramani, & Jordan, 1995)

while other behavior, especially in higher level cognition, is subject to gross biases

and errors (McCloskey et al., 1980; Tversky & Kahneman, 1983). This dichotomy has

driven debates as to whether cognition is generally rational (Anderson, 1990; Tenenbaum,

Kemp, Griffiths, & Goodman, 2011) or whether it is based on a set of ad hoc heuristics

(Gigerenzer & Gaissmaier, 2011; Marcus & Davis, 2013). Our results suggest an alternate

contrast: Everyday behavior is calibrated and sensible by combining uncertainty with

rich, accurate knowledge about how the world works; on the other hand, deliberate

reasoning cannot access such rich world knowledge and instead relies on explicit and
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potentially faulty information. A basketball player might weave past opponents to score

a spectacular basket but not be able to explain what he is about to do, a child’s ability

to draw a cat is not related to her ability to recognize one, and most people can speak

coherently without explicit knowledge of how to conjugate verbs.

Our results indicate that the contrast between effortless, calibrated actions and

idiosyncratic, error-prone reasoning does not exist between domains of knowledge, but

rather between domains of behavior. If people have multiple, and sometimes inconsistent,

systems of knowledge, debates about human rationality can be refocused on explaining

the structure and organization of our world knowledge, how it guides different types of

behavior, and how it arises over experience and evolution. Rather than argue whether

people do or do not understand certain physical principles, for instance, we should study

how people develop the physical understanding needed to interact with the world, how

people reason explicitly about physics, and how those two systems interact to determine

behavior in different situations. By accounting for these different systems of knowledge,

we can move beyond simply debating whether or not the human mind contains a specific

concept and instead study how that concept might be incorporated in different systems of

knowledge and deployed differently between domains of behavior.
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3 Sources of uncertainty in intuitive

physics

Abstract

Recent work suggests that people predict how objects interact in a manner con-

sistent with Newtonian physics, but with additional uncertainty. However, the sources

of uncertainty have not been examined. Here we measure perceptual noise in initial

conditions and stochasticity in the physical model used to make predictions. Participants

predicted the trajectory of a moving object through occluded motion and bounces, and

we compared their behavior to an ideal observer model. We found that human judg-

ments cannot be captured by simple heuristics, and must incorporate noisy dynamics.

Moreover, these judgments are biased consistently with a prior expectation on object des-

tinations, suggesting that people use simple expectations about outcomes to compensate

for uncertainty about their physical models.

3.1 Introduction

Predicting how the world will unfold is key to our survival and ability to function

on a daily basis. When we throw a ball, cross a busy street, or catch a pen about to fall off

of a desk, we must foresee the future physical state of the world to plan our actions. The

50
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cognitive mechanisms that help us make these predictions have been termed ‘intuitive

physics’ models.

Although human performance in physical prediction tasks tends to approximate

real-world (Newtonian) physics, it does not match exactly: people make systematic

prediction errors. While this has been taken as evidence that human models of intuitive

physics are non-Newtonian (e.g., McCloskey, 1983), more recently human behavior

has been explained by intuitive Newtonian physics models under uncertainty. On this

account, human predictions deviate from Newtonian mechanics because of stochastic

error – uncertainty about the initial positions or velocity of objects propagates through the

non-linear physical model and causes variability and bias in final judgments. For instance,

human predictions about the stability of a tower of blocks or the most likely direction

for that tower to fall are consistent with a purely Newtonian model of physics with a

small amount of uncertainty in the initial positions of the constituent blocks (Hamrick,

Battaglia, & Tenenbaum, 2011). Similar models of physics with perceptual noise have

been used to explain relative mass judgments in collisions (Sanborn, Mansinghka, &

Griffiths, 2009) and infants’ expectations for object movement (Teglas et al., 2011).

There are numerous ways in which uncertainty can be introduced into intuitive

physical reasoning. We broadly classify these into two categories: perceptual uncertainty

and uncertainty about dynamics. Perceptual uncertainty arises because initial measure-

ments of the location and velocity of objects is imperfect; this initial noise propagates

through the model. Uncertainty about dynamics reflects noise in the physical model itself.

Real object movement and collisions are perfectly deterministic only in an idealized

system; in the world, objects can deviate from their ideal path because of multiple,

unknowable interactions with the environment (e.g., a ball rolling across gravel will

not move in a straight line). Stochastic dynamics could thus reflect such environmental

uncertainty.
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Our goal is to disentangle the influence of initial noisy percepts and noisy physics

on human predictions of object dynamics. We compared human behavior in a simple

physical prediction task to a stochastic physics model with parameters reflecting the

different types of uncertainty.

3.2 Stochastic physics model

We designed a model to replicate stochastic physics in a simple environment:

a ball bouncing around a two-dimensional box. We based this model on idealized

mechanics, but also incorporated the two sources of uncertainty: we added noise to the

initial position and velocity to capture perceptual uncertainty, while dynamic uncertainty

was captured by jitter in object movement over time, and variability in bounce angles.

3.2.1 Uncertainty parameters

The model was based on a simple two-dimensional physics engine customized to

add our sources of uncertainty. As physical uncertainty goes to zero, this model reduces

to laws from idealized mechanics: the ball would continue to move in a straight line

at a constant velocity until it hit a wall, at which point it would bounce elastically and

with angle of incidence equal to the angle of exit. Uncertainty was captured using four

parameters, two for the perceptual error, and two for the stochastic error.

Perceptual uncertainty

At the start of the simulation, the ball’s position and velocity were based on where

the ball would be in a perfectly deterministic simulation, but with noise added. Position

was perturbed by isotropic two-dimensional Gaussian noise parameterized by standard

deviation, σp. Noise in velocity direction was captured in a von Mises (circular normal)
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Figure 3.1: Sources of uncertainty in the stochastic physics model. Each parameter
refers to a different source of noise: position noise (σp), velocity direction noise (κv),
ongoing movement ‘jitter’ (κm), and noise added with a bounce (κb).

distribution on direction of motion, parameterized by concentration (inverse variance)

κv. We did not consider uncertainty in the speed of the ball, as this would only affect the

timing of the ball’s movement but not its destination, which is the prediction we aim to

capture.

Dynamic uncertainty

Noise was added during the simulation in two ways. First, at each time step

(1000/sec), the direction of the ball was ‘jittered’ by adjusting its direction using a

von Mises distribution with the concentration parameter κm. In addition, noise was

added during each bounce by assuming that the angle the ball bounced off of the wall

was defined by a von Mises distribution centered on the angle of incidence with a

concentration parameter κb.
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3.3 Experiment

We aimed to test model predictions against human data and to estimate uncertainty

parameters in intuitive dynamics. In this experiment, subjects predicted the trajectory

of a ball in a two-dimensional environment on a computer screen. This was done in

a ‘Pong’ game where participants tried to catch the ball with a paddle. Crucially, we

occluded the latter part of the ball’s movement, so that successful prediction of the final

position required the mental simulation of the object trajectory. We could estimate the

final position predicted by our stochastic physics model with different parameters, and

thus compare human behavior to model predictions under varying types and degrees of

uncertainty.

In this experiment we parametrically varied both the distance the ball would

travel1 and the number of bounces off of walls while occluded. If intuitive dynamics

models are deterministic, then the number of bounces will have no effect on human

predictions. The distance manipulation was designed to tease apart the contributions of

perceptual uncertainty about velocity and dynamic velocity noise.

3.3.1 Methods

52 UCSD undergraduates (with normal or corrected vision) participated in the

experiment for course credit.

Subjects used a computer mouse to control the vertical position of an on-screen

‘paddle’ to catch a moving ball. The ball moved according to the deterministic physics

underlying the stochastic physics model. Both the paddle and the ball were confined to

a 1200 by 900 pixel area in the center of the screen. Each trial began with a display of

only the paddle, which subjects could move up and down. The paddle was 100 pixels in

1Because the ball always moved at a constant velocity, distance was proportional to duration of
occlusion.
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Figure 3.2: Diagram of a trial. (A) The ball moves unoccluded in a straight line. (B)
Once the field is occluded, the ball continues to move and the subject must predict
where it will end. (C) The trial ends once the ball is either caught or passes the plane of
the paddle.

height and was centered on the vertical position of the mouse before each trial. A mouse

click triggered the start of a trial. A ball would then appear on the screen, moving at

a constant velocity of 600 pixels/second. After the ball moved 400 pixels (667ms), a

grey rectangle would occlude the portion of the screen containing the ball (Figure 3.2).

During this period, the ball would continue to move, bouncing perfectly elastically off of

the edges of the field, but would not be visible. Once the subjects caught the ball with the

paddle, or the ball broke the plane of the paddle, the trial would end and the occluder

would be removed, showing whether (and by how far) the subject missed the ball. Upon

clicking the mouse, the screen would clear and reset for the next trial. The number of

balls caught by the subject was always displayed in the upper right corner as a motivation

to perform well.

Subjects were given 648 trials throughout the experiment. These 648 trials were

identical for all subjects, but presented in a randomized order. Each trial had a particular

ball trajectory, generated by one of nine conditions. The nine trajectory conditions

crossed the distance the ball travelled while occluded (600, 800, or 1000 pixels) with

the number of bounces (0, 1, or 2); there were 72 trials of each condition. The specific

path for each trial was generated prior to the experiment subject to the constraints of the
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condition and the constraint that the final position was not in the top 20% or bottom 20%

of the enclosed area to avoid bias due to positioning the paddle at the ends of the screen.

Before starting the experiment, subjects were given seven trials without the

occluder to demonstrate how the ball would move, then six practice trials with the

occluder.

For each trial, we recorded the position of the midpoint of the paddle once the

ball was caught or moved past the paddle. From this measure we could calculate, for

each trial, (a) the average expected position of the ball, and (b) the variance of predictions

around that expectation.

3.3.2 Subject performance

Accuracy

Subjects caught the ball on 43.8% of all trials. Individual subject accuracies

varied between 25.6% and 63.7% (chance was 11%). Accuracy also varied by trial

condition: subjects were most accurate in the shortest, no bounce condition (69%) and

least accurate in the longest, two-bounce condition (32%).

Accuracy improved slightly over time, increasing from 42.7% in the first half

of trials to 44.9% on the second half (χ2(1) = 15.9, p < 0.001). However, because

this was a small effect, and because in a logistic model predicting accuracy, trial order

did not interact with either distance (χ2(2) = 0.72, p = 0.70) or number of bounces

(χ2(2) = 4.18, p = 0.12), we do not try to account for this change.

Expected positions

In addition to decreasing accuracy, subjects also showed increasing bias in average

predictions as the distance or number of bounces increased. The mean final position of
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Figure 3.3: Mean predicted paddle position versus path endpoint using deterministic
physics as a function of trial condition. Each point represents a separate trial.
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Table 3.1: Percent of distance ‘shifted’ from actual end ball position towards center by
trial condition

Distance

B
ou

nc
es

600 800 1000
0 24% 44% 53%
1 23% 60% 70%
2 41% 63% 84%

Table 3.2: Average standard deviation (in pixels) of responses within a trial by condition

Distance
B

ou
nc

es

600 800 1000
0 65 76 94
1 111 115 114
2 115 111 121

the paddle for each trial shifted towards the center as compared to the final ball position

(see Figure 3.3). The magnitude of this bias toward the center of the screen increased as

either distance or number of bounces increased.

Variance of responses

The variability of subjects’ responses around the mean also increased with dis-

tance and bounces, but only up to a ceiling – well below the maximum possible spread –

once subjects had to take into account even one bounce (see Table 3.2).

3.4 Model application

The coarse results suggest that prediction error and variability increases with

distance or number of bounces. But they do not indicate which sources of uncertainty

contribute to intuitive physics predictions, nor do they explain why some trials within the
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same condition produce greater bias and variability than others.

We aimed to tease these factors apart via our model of stochastic physics. By

finding the set of uncertainty parameters that best fits the empirical data, we can com-

pare the relative contribution of the perceptual uncertainty parameters to the dynamic

uncertainty parameters. A good model should capture trial-level differences in subjects’

performance, and explain trial difficulty based on the interplay of different sources of

uncertainty.

3.4.1 Simulation

We replicated the experimental task in the stochastic physics model, simulating

the same 648 trials. To mirror this task, each simulation started at the point of occlusion

(when subjects could no longer visually track the ball and must predict its path) and

ended when the simulated ball crossed the plane of the paddle. On each simulation, we

measured the position of the simulated ball along that plane. Because there is no analytic

form of the probability distribution over possible trajectories, we simulated each trial 500

times, thus estimating the predictive distribution for each trial via sampling.

No reasonable set of uncertainty parameters produced mean estimates of the

final position of the ball that were systematically shifted toward the center like the

empirical data; as long as Newtonian physics underlies the model, averaging over all

simulation paths, the mean ending position will be close to the actual endpoint for most

trials, regardless of the uncertainty parameters chosen.2 Since the magnitude of the

center bias scaled with distance and number of bounces, we suspected that subjects

were incorporating a prior on final position, producing a center bias proportional to the

uncertainty in their physics-based predictions. People therefore appear to incorporate

2If the ball ended close to a bounding wall, the distribution of simulated end positions was skewed
away from the wall (because of simulated bounces). However, the average end position tracked the actual
endpoint with considerable fidelity (r = 0.95).
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prior expectations with their intuitive physics models.

We treated this bias as a simple Gaussian prior on the final ball position centered

on the middle of the screen, with standard deviation as a free parameter (σprior). One

value of this parameter was used for all trials and conditions.

The final distribution of predictions for each trial was calculated by combining

the center-prior with the distribution of predicted positions simulated by the stochastic

physics engine. We treated the distribution of predicted positions as a Gaussian and

calculated their mean and standard deviation. We could then calculate the mean and

standard deviation of the posterior distribution using Bayesian cue combination (e.g.,

Ernst & Banks, 2002):

σ
2
post =

(
1

σ2
prior

+
1

σ2
sim

)−1

(3.1)

µpost =

(
xcenter

σ2
prior

+
µsim

σ2
sim

)
∗σ

2
post (3.2)

Using these equations, trials with greater simulation variance will be more affected

by the prior, and will shift further towards the screen center. Thus, the model can account

for the center-bias in a manner sensitive to prediction uncertainty.

We found the maximum likelihood parameters to fit three quarters of the data

(with an equal number of trials from each of the distance by bounce conditions).3 We

also fit two other models: one with only perceptual uncertainty and prior parameters, and

one with only dynamic uncertainty and prior parameters. We compared these models

based on the likelihood of the quarter of the remaining (cross-validation) data.

3Numerical optimization techniques can find local minima, so we used multiple starting points and grid
search across 1,600 sets of parameters to ensure we were finding the global minimum.
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3.4.2 Model results

Model comparison

We designed the stochastic physics model to investigate how various sources

of uncertainty contribute to intuitive physics. Thus we compared the model with both

dynamic and perceptual uncertainty to the two nested models with either dynamic or

perceptual uncertainty parameters alone to determine which sets of parameters were

necessary to best explain the data.

In addition, we tested how well any of the stochastic models captures human

behavior by comparing them to a ‘heuristic oracle’ model with different parameters for

each condition. The heuristic oracle model assumes that people know the correct answer

(thus “oracle”), but produce errors that vary by condition without regard to individual

trial details (“heuristic”). These errors include some bias towards the center (given by a

linear relationship between average reported position and the deterministic end point),

and response variability distributed around that shifted position (with variance estimated

independently for each condition). In other words, the heuristic oracle model is a non-

physical error model. This model can capture the gross ‘shift’ in expected position that

was observed in the data in each condition (see Figure 3.3), but does not treat the shift as

an inference done independently on each trial. The spread in responses was assumed to

be constant within each condition, and was set at the average empirical standard deviation

from that condition. Like the stochastic models, this model was fit on three-quarters of

the trials and tested on the remaining data.

Table 3.3 shows cross-validation likelihood for the four models. All log-likelihoods

are shown as improvement over a baseline assuming that all data came from a single

Gaussian. In addition, we included a ‘perfect trial fit’ model that knows the mean and

standard deviation of responses for each trial – this serves as the plausible upper limit
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Table 3.3: Model prediction of left-out data

Model ∆LLH
Full 2,588
Dynamic 2,568
Perceptual 2,197
Heuristic Oracle 2,326
Perfect Trial Fit 3,259

Figure 3.4: Sample simulation paths for one trial with each model. The grey lines
represent individual simulations, the black line represents deterministic simulation.
There is no initial uncertainty in the dynamic model, but it builds quickly over time,
resulting in wavy paths. The initial position and velocity vary significantly in the
perceptual model, but once started, the simulation unfolds deterministically. The full
model uses both types of uncertainty and so has more certainty in starting positions than
the perceptual model and straighter paths than the dynamic model.

on how well different models might do. The full stochastic model does best, followed

closely by a model including only dynamic noise. Both the perceptual noise model and

the non-physical model perform worse by many orders of magnitude.

The dynamic model performed nearly as well as the full model for two reasons.

First, the parameter representing error in the initial position (σp) was set to a small value

in the full model and explained very little of the variance in simulations. Second, much

of the noise in initial velocity direction (κv) can be captured by increasing dynamic

velocity noise (κm), and so we cannot say whether any initial velocity noise is required.

The model with only perceptual noise did quite poorly because subjects’ performance
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Figure 3.5: Full model predictions vs. empirical mean position by condition. Each
point is a separate trial. The full model captures peoples’ empirical behavior (including
the center bias) well over every trial condition.

changed with each additional bounce, and thus human performance cannot be captured

without dynamic uncertainty.

Trial-level simulations

Human predictions about individual trials within the same distance-by-bounce

condition varied significantly: some had much larger variations in responses or greater

shifts toward the center than others. These differences arose from trajectory characteristics

other than total distance traveled or number of bounces. For instance, it is harder to

predict the end position of a ball that bounces in a corner or balls that approach the paddle

at a steep angle. If the stochastic physics model is capturing characteristics of intuitive

physics, then it should capture this within-condition variability as well.
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Table 3.4: Correlation between model and empirical by-trial means within condition

Full Heuristic Oracle
Distance Distance

B
ou

nc
es

600 800 1000 600 800 1000
0 .99 .99 .99 .99 .99 .99
1 .86 .88 .85 .88 .77 .68
2 .89 .87 .82 .82 .68 .45

The full stochastic model fit the variation in mean paddle position across trials

well (r = 0.93), and slightly better than the predictions of the heuristic oracle model

(r = 0.90). However, the difference between models is highlighted when considering

individual conditions: although both models account for the mean position in the no-

bounce conditions, only the full model continues to perform well as bounces and distance

are added (see Table 3.4).

The standard deviation of predictions from the full stochastic model was well

correlated with the standard deviation of subjects’ responses across trials (r = 0.79, see

Figure 3.6), albeit with a tendency to overestimate. Moreover, the stochastic physical

model also captures the variability across trials within each distance-by-bounce condition

(Table 3.5). Together, these results indicate that human uncertainty about final outcomes

accumulates in a manner qualitatively similar to that predicted by a stochastic physical

model.

In the experimental data, the amount of mean-shifting for each trial is related

to the variance of the observations from that trial (Spearman’s rho = 0.30), suggesting

that people hedge their guesses towards the middle more as the amount of uncertainty

increases. A center-prior captures this behavior by causing more reliance on the prior

when there is a wider distribution of model simulations. This has the effect of shifting

guesses more towards the center when physical simulations are more uncertain. The
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Figure 3.6: Full model vs. empirical standard deviation by trial. Each point represents
a separate trial.
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Table 3.5: Correlation between full model and empirical by-trial standard deviations
within condition

Distance

B
ou

nc
es

600 800 1000
0 .54 .43 .17
1 .53 .44 .30
2 .14 .16 .17

stochastic physics model captures this phenomenon by predicting trial-level differences

in uncertainty, and is thus better able to describe variation in human responses across

trials than a constant mean-shift for each condition (see Figure 3.5).

3.4.3 Source of the center bias

Subjects positioned their paddle closer to the middle of the screen than where the

ball actually ended, and we suggest that this bias arises from subjects’ prior expectation

that the ball will end in the center. In this section we address alternate explanations for

this bias: is the center bias arising from task demands and strategies for dealing with

this difficult task? Or is such a bias learned over time? We argue that neither of these

accounts explains the bias we observe.

We assume that the middle of the paddle is each subject’s best guess for the end

position of the ball, but subjects could instead be attempting to minimize a loss function

on the distance between each of the simulation outputs and where they place the paddle.

Because predicted end-points under a physical model are somewhat skewed away from

the edges (toward the center) due to the physical non-linearities of bounces, estimated

positions will also be skewed toward the center relative to the modes of the distributions.

However, these effects do not explain subjects’ center shift. With a quadratic loss function

(L2), the best placement of the paddle would be the mean of the simulations (Strook,
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Table 3.6: Autocorrelation of paddle position with prior position

Distance

B
ou

nc
es

600 800 1000
0 .12 .14 .18
1 .14 .17 .13
2 .20 .20 .18

2011, p. 43), but as noted previously, the mean of the distributions was often centered on

the end position of the ball and does not account for the observed center bias (indeed,

this is why we suspected that subjects were using a center-prior). With a linear loss

function (L1), the optimal paddle placement is the median of the simulation distribution,

and a skew towards the center makes the median closer to the edges than the mean,

predicting a relative edge bias. Although a more exotic loss function (e.g., L4 or L8)

might increase predicted center-shifting, an arbitrary choice of this function would require

more explanation than a center-prior.

Subjects may also have failed to move their paddle on some trials or not moved

it quickly enough. Such a process would average out to yield an apparent center bias.

If subjects’ failure to move the paddle were exacerbated on more difficult trials, the

center-shifting would be greater on those trials. We can test for such failures to move the

paddle by assessing the autocorrelation between paddle positions on adjacent trials: on

this account, the autocorrelation should be related to the amount of center-shifting. As can

be seen in Table 3.6, this autocorrelation is low, although it does increase somewhat with

the distance or number of bounces. However, it does not increase as center-shifting does

– correlation with each condition’s center-shifting (Table 3.1) is low and not statistically

significant (Spearman’s rho = 0.25; one-tailed permutation test, p = 0.25). Thus while

movement failures may contribute somewhat to the center-shifting, they cannot fully

explain it.
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To make the next trial easier, subjects may have positioned their paddle closer to

the center of the screen. This might make sense in a task where trials follow quickly after

one another; and subjects have insufficient time to reposition the paddle between trials.

However, we did not enforce inter-trial times in the experiment: subjects were free to

move the paddle after each trial, and each trial was only started once the subject clicked

the mouse. Furthermore, as evidenced by low autocorrelations between paddle positions,

subjects do not appear to have any difficulty repositioning the paddle from one trial to

the next. Thus it seems unlikely that such a strategy would benefit subjects.

Beyond this bias being imposed by task demands, it is possible that this expecta-

tion about the ball’s movement was learned from the experiment. Each of the trials in

the experiment was created with the constraint that the ball would not cross the plane

of the paddle at the extreme ends of the screen; subjects may have noticed this fact

and adjusted their responses appropriately. In order to address this concern, we tested

whether the center-bias increased over the course of the experiment. We measured the

amount of relative center-shifting that each subject had for each trial, and regressed

this against the trial order, controlling for effects of the specific trial type; however, we

found no evidence of a linear relationship between order and amount of center-shifting

(F(1,32996) = 0.139, p = 0.71). Moreover, the estimated slope of this line suggests that,

if anything, the center bias decreased over time.

Because the center-shifting behavior cannot be fully explained by task demands,

and because this behavior did not change over the course of the experiment, we believe

that the center bias is evidence of subjects’ prior expectations about the ball’s movement.
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3.5 Discussion

We found that human performance on a physical prediction task is captured

by a model of stochastic physics with a prior expectation about the final position of

objects. Furthermore, we found that bias and variability of human predictions are driven

by uncertainty about the dynamics: people use stochastic, rather than deterministic,

physics to make predictions. This result supports recent findings that people predict

object dynamics using unbiased intuitive physics models (e.g., Hamrick et al., 2011),

and suggests two refinements to this view. First, the internal physics models themselves

must be stochastic rather than rely solely on perceptual uncertainty to demonstrate non-

determinism. Second, people do not directly use predictions from their physical models,

but combine them with simple priors to produce rich behaviors.

Though we found that dynamic uncertainty contributes substantially to predictions

in this task, we do not know how people might adjust this uncertainty based on task

demands. In this experiment, the ball was easy to see (low perceptual uncertainty) and

the background was uniform (suggesting less perturbation during movement). Lower

contrast between object and background might cause greater perceptual uncertainty;

likewise, backgrounds suggesting a rough surface might cause people to introduce more

stochastic movement error into their simulations. An interesting direction for future work

is to explore how people adjust the uncertainty within their intuitive physics models to

account for different expectations about the world.

We also found that people modulate their physical predictions via prior expecta-

tions about the outcomes. Although these expectations could arise in many ways, here

we were able to capture human behavior well by using a simple expectation about the

final position: people believed that the ball was more likely to end up in the center of

the screen. This expectation might arise because in similar games such as air hockey
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opponents are more likely to shoot the puck towards the goal in the center. However, it is

also possible that this is an approximation of other sorts of priors (e.g., objects tend to

travel in a more horizontal direction). More research is required to understand exactly

what these prior expectations are, how they develop, and under what conditions they

become integrated into models of intuitive physics. Regardless of the prior used, we think

that this might reflect a more general strategy that people may adopt to account for their

uncertainty in their internal physical model itself: by adjusting model predictions via a

simple prior on outcomes, behavior will be more robust to errors in the simulation model.

A similar process may suggest a means for combining model-based and model-free

predictions (Glascher, Daw, Dayan, & O’Doherty, 2010): learning simple expectations

about the world is a good hedge against model error.

Our models predicted systematically larger variances than those we observed.

This may be due to our simplistic choice of the shape of the prior. Gaussian cue

combination of the prior and simulated distributions produces dependence between

variance and mean-shift: a greater mean-shift arises only from greater variance. Thus to

best fit the predicted means, using a Gaussian prior required a biased variance estimate.

Further work is required to understand the priors people actually hold (e.g., Stocker &

Simoncelli, 2006) to refine the models that people use to simulate the world.

This work supports the hypothesis that intuitive physics models can be built upon

a Newtonian framework. Moreover, these models are not deterministic, but incorporate

sources of dynamic uncertainty. Furthermore, people do not trust these models entirely,

but combine their predictions with simple expectations about the outcome itself. Though

just a first step, this provides a framework for disentangling and understanding the various

components of intuitive physics models.
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4 Accumulating physical evidence

over time

Abstract

People regularly make and update their predictions about physical events in real-

time – for instance, positioning oneself to return a tennis shot requires not just predicting

where the ball will go, but also quickly updating that prediction in light of new evidence

such as the ball nicking the top of the net. But the information processing required to

keep track of these predictions and update them based on ongoing evidence is far from

trivial; how then are people able to do this information processing in real-time? Here

we investigate how people perform this ongoing physical prediction with a novel task

that required participants to make and update their predictions about the future state of

the world in real-time. We find that peoples’ predictions are consistent with a theory

that they accumulate evidence over time from an ‘intuitive physics engine’ that noisily

simulates the future state of the world. This demonstrates that human interactions with

the world can be supported by rich, structured predictions about what might occur that

are continually updated as the world provides additional information.

72
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4.1 Introduction

A good hockey player plays where the puck is. A great hockey player plays where

the puck is going to be. – Wayne Gretzky

In hockey, the puck can move across the rink in a matter of seconds. A hockey

player who only skated towards where she sees the puck would spend the entire game

chasing it and rarely reaching it; instead, she must build predictions about where the

puck will be so that she can skate there. But she must also update these predictions as

the game unfolds: if she thinks the puck will cross the rink but she sees an opponent

intercept it, she should form new predictions about where the puck will be and update

her own trajectory accordingly. And crucially, all of these predictions must be done in

real-time. Of course, this capacity is not limited to hockey players: when driving, we

track and predict the motion of other cars and pedestrians, and even children playing tag

must track and predict each others’ behavior.

Yet generating and updating predictions about where the puck will be is a difficult

task. It requires not just tracking the puck over time, but also extrapolating the trajectory

of the puck through bounces off the sides of the rink or other players, and constant

updating of that extrapolation to integrate new information. And these predictions must

be formed in real-time while the world itself is changing. How then do people perform

this challenging task?

Prior research suggests that people track objects using a limited form of prediction:

integrating noisy estimates of the position and trajectory of objects to probabilistically

determine where the objects will be observed next, then updating beliefs about the position

and trajectory in light of those future observations (e.g, Kwon, Tadin, & Knill, 2015;

Vul, Frank, Alvarez, & Tenenbaum, 2009). Because our beliefs about the new location

of an object are a weighted combination of our prior expectations and observations, our
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tracking is stabilized and not unduly reliant on potentially noisy observations. However,

the predictions required for object tracking tasks are very short, since the object itself

remains visible, and often do not require accounting for object interactions (e.g., the

hockey puck bouncing off of the side of the rink; though for an example of tracking

through bounces c.f. Hayhoe, Mennie, Sullivan, & Gorgos, 2005), so it is not clear how

generalizable this tracking process is to predictions more than a few moments out.

On the other hand, recent studies of physical reasoning have suggested that

people make physical predictions by taking noisy samples of the attributes of objects and

simulating how the world will unfold with an ‘approximate physics engine’ (Battaglia,

Hamrick, & Tenenbaum, 2013) – often termed the ‘noisy Newton’ hypothesis (Sanborn,

Mansinghka, & Griffiths, 2013). But this theory is specified at Marr’s computational

level (Marr, 1982), and therefore while it can explain what decisions we make when we

reason about physical events – for example, how people judge causality (Gerstenberg,

Goodman, Lagnado, & Tenenbaum, 2012) or determine the positioning of objects (Scarfe

& Glennerster, 2014) – it does not specify how those predictions should evolve over time

as the world (and therefore our simulations) change.

Investigating how our physical predictions change therefore requires studying the

dynamics of how we integrate evidence – not just what we predict will happen, but when

we make those predictions. Hamrick, Smith, Griffiths, and Vul (2015) proposed that we

sequentially produce simulations from our internal physics engines until the net evidence

from those simulations in favor of one possible future is large enough to note it as a

prediction. This model explained peoples’ decision times across a variety of conditions

in a simple dichotomous prediction task (“if this ball continues its trajectory, will it pass

through this hole in a wall, or bounce off?”), but this decision was made after viewing the

relevant trajectory, and therefore cannot explain how this evidence dynamically evolves

along with the world.
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We therefore investigate here how people use simulations to make and update

their predictions in a changing environment, and therefore how our evidence about what

might occur evolves over time. Participants performed a task in which they judged

the future behavior of a ball bouncing around a computerized table, and were asked

to continually indicate their predictions as the ball moved around. We propose that

people will accumulate evidence from their physical simulations similarly to Hamrick

et al. (2015), but because the state of the world changes over time, so will the starting

point of the simulations (and therefore the evidence they provide). We find that a model

instantiating these principles predicted participants’ judgments extremely well, and

requires accounting for both physical simulation and accumulating evidence from those

simulations to explain how people perform this task.

These findings provide insight into how people develop and update beliefs about

the future when the world itself is changing: we use structured models of the world to

make predictions about the future, and update our beliefs in line with changes in those

predictions.

4.2 Experiment

4.2.1 Participants

One hundred participants were recruited from Amazon Mechanical Turk in

accordance with UCSD IRB regulations. The recruiting and data recording was supported

by the psiTurk framework (Coenen, Markant, Martin, & McDonnell, 2013). Participants

were limited to those who had a US IP address, a minimum approval rating of 95%, and

a non-mobile browser – the default exclusion settings for the psiTurk framework.

Participants were compensated $1 for their participation, which lasted approxi-

mately 15 minutes. Two participants were eliminated due to data recording errors, leaving
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data from ninety eight participants.

4.2.2 Methods

On each trial, participants saw a ball moving around a ‘table’ on the computer

screen that contained blocks and both a red and a green target. The ball bounced perfectly

elastically off of the edge of the table and blocks according to Newtonian mechanics

(instantiated with the Chipmunk 2D physics engine; Lembcke, 2011), ending when the

ball reached one of the two targets. While the trial progressed, participants were asked to

predict whether the ball would hit the red target or the green target first, indicating their

guess by holding down either the ‘z’ or the ‘m’ key (each key counterbalanced for red

and green between participants). If they were unsure, participants could press neither key,

and if their prediction changed mid-trial, they were encouraged to switch keys. Holding

down a key would fill a bar of the associated color, and at the end of the trial, the score

would be determined by the difference between the proportion of time the keys for each

target were held down (with an offset to encourage participants by providing them with

mostly positive scores):

Score = 20+100∗ (PropCorrect−PropIncorrect) (4.1)

After each trial participants were notified of their score and could continue to the

next trial by pressing the spacebar.

The tables were each 1000px wide and 620px tall to ensure that both the tables

and controls would fit on screens with a minimum of 1024x768px resolution (which

includes all resolutions of XGA and HD or better). If someone attempted to participate

but did not have a screen of at least these dimensions, they would be notified that their

screen was too small and were not allowed to continue.
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Figure 4.1: Left: Screenshot of a trial. Participants viewed the ball moving around
the screen and would hold down either ‘z’ or ‘m’ to fill the bar corresponding to the
target they believed the ball would eventually reach. (The arrow was not visible to
participants). Right: The path that the ball traveled on the example trial. The points and
numbers indicate the time in seconds that the ball took to reach that point.

On all trials, the ball traveled at 300px per second. The display was updated every

25ms, but responses were polled only once every 100ms.

To ensure that online participants were paying attention through the experiment

they were told to keep the window up at all times, and if their browser window lost focus

(indicating that they were attending to another task) or they shrunk the window to below

1010x755px resolution they were reminded that the window should remain large and in

front, and that trial was marked as invalid for data analysis. This process excluded 143 of

the 9,800 trials.

4.2.3 Materials

All participants were given the same 100 trials, but with the order randomized. Of

these trials, 95 were randomly generated subject to the constraint that they last between

2 and 10 seconds, and so that there were 19 trials each with one through five walls to

ensure a range of difficulties and paths.

Of the remaining five trials, four were ‘contained’ trials in which the ball phys-
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ically could not reach one of the two targets.1 These trials were created to determine

whether simulation-based physics could account for participants’ judgments when rea-

soning about containment could provide an alternative solution without simulation.

All target colors were randomly swapped for each trial to avoid color bias ef-

fects. Responses in swapped trials were re-swapped so that analysis of predictions was

consistent with goal locations rather than color.

4.2.4 Aggregate predictions

We analyzed participants’ aggregate performance across trials via their total score

(Equation 4.1). Participants mostly scored in the same range, with low variability in

the average score each participant earned across all trials (mean = 56.9, sd =6.4, range

= [30.4,70.0]). Furthermore, participants’ scores for each trial were very consistent

(split half correlation, r = 0.98).2 Because of this consistency we found it appropriate

to explain how people make predictions on average rather than focus on individual

differences.

On the other hand, the average score for each trial across all participants was

highly variable (mean = 56.9, sd = 23.8, range = [−25.6,87.7]), suggesting that we

captured a range of difficulties, from trials where people were more likely to predict the

incorrect target to trials where most people very quickly determined which target was

correct.

However, this does not explain why participants make errors on some trials and

not on others. To explain human predictions, we turn to a computational model of the

1Due to an error in the production one of the hand-crafted trials – the ball could in fact reach the
‘inaccessible’ goal – it was not treated as ‘contained.’

2This statistic was calculated by splitting participants into two equal sized groups, determining the
correlation of average trial scores between the groups, and averaging this correlation across a large number
of possible splits. Thus it is a measure of how well we can predict participants’ behavior on each trial from
a separate set of participants.



79

prediction process.

4.3 Physical evidence accumulation

The model we used to predict behavior on this task has two parts: the physical

simulator, which provides possible paths that the ball can take, and the evidence accu-

mulator, which uses the output of the physical simulations to determine whether there is

enough evidence in favor of one of the targets to make a decision.

4.3.1 Physical simulator

The part of the model that simulates the trajectory of the ball is based in large part

on the model of Chapter 3 (Smith & Vul, 2013). This model assumes that people base

their physical simulations on real accurate, Newtonian mechanics but must incorporate

uncertainty about the world into their physical judgments.

This model captures two sources of uncertainty: 1) perceptual uncertainty arises

from the noisiness of inferring the position and movement of objects, and 2) dynamic

uncertainty is uncertainty about the roughness and elastic properties of the table and walls

that could cause the ball’s path to deviate from idealized Newtonian physics over time.

See Chapter 3 for further details on the physical simulation and uncertainty parameters.

The physical simulator produces 100 simulation paths every tenth of a second

for each trial to replicate the polling frequency in the experiment. Each simulation path

would continue until the ball reached one of the two targets.3 Therefore the physical

simulator provided a proportion of the number of paths that reached the red versus green

target at each time-step of each trial. This information was provided to the evidence

3For computational efficiency, if a simulation path lasted more than 60 seconds, it would end and be
replaced by another path that reached one of the two targets within the limit.
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accumulator to determine how quickly evidence for one target or another changed over

time.

4.3.2 Evidence accumulator

While the physical simulator provides the probability of sampling a path that

reached either of the targets at each time point, the evidence accumulator probabilistically

samples from this distribution to build evidence for one target versus the other.

To model this decision process, we use a well-known decision policy for sample-

based choices: the sequential probability ratio test, or SPRT (Wald, 1947). According to

the SPRT, to make a dichotomous decision, an agent probabilistically samples evidence

in favor of one hypothesis or the other, then makes a decision when the net evidence in

favor of one hypothesis reaches a set threshold. SPRT (often called the drift diffusion

model) is widely used to model the time-course of choices in simple decision making

tasks (e.g., Ratcliff & Rouder, 1998; Bogacz, Brown, Moehlis, Holmes, & Cohen,

2006), but, crucially for this task, SPRT has been shown to explain the time course of

physical decision making (Hamrick et al., 2015) and related models have been extended

to non-stationary evidence (Tsetsos, Usher, & McClelland, 2011).

However, because the state of the world evolves over time, not all sampled

evidence should be considered equal – a sample of where the ball will go from three

seconds ago should be less informative than a current sample, since the current sample

incorporates knowledge about the ball’s current location and trajectory. We therefore

assume that information leaks over time (Usher & McClelland, 2001), providing primacy

for current evidence.

Therefore, this decision process can be formalized by assuming that at each time

point t a sample path is drawn from the physical simulator, and the sample evidence (St)

is set to 1 if that path reaches the red target, or −1 if that path reaches the green target.
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The net evidence in favor of the red target (Et) is updated based on that sample and the

amount of leakage (L):

Et = Et−1 ∗ (1−L)+St

E0 = 0
(4.2)

The choice of which decision to make (Dt) is therefore given by whether the

magnitude of the evidence has reached some threshold T :

Dt =


“Red” if Et ≥ T

“Green” if Et ≤−T

“None” otherwise

(4.3)

Because there is no analytic solution for the probability of making a decision, this

evidence accumulation process was repeated 1,000 times for each trial to determine the

probability of making each decision at each time point.

Finally, because people cannot instantaneously process the information on the

computer screen, form simulations, and push the button (and indeed the timing of each

of these elements will differ from person to person), we accounted for all of this time

unrelated to evidence accumulation by offsetting all decision probabilities by constant

amount to f f , then convolving those predictions with a Gaussian kernel with standard

deviation twidth to account for variability in integration and motor timing.

4.3.3 Explaining participants predictions with physical simulation

Participants’ predictions at each time-step of each trial were well explained by

accumulating evidence from a physical simulation engine: the model could explain both
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Figure 4.2: Joint histogram of model (x-axis) and human (y-axis) decisions. Left: the
probability of making any guess (pushing a button). Right: the probability of choosing
‘red’ given a decision. Colors indicate the log-frequency of time points in each bucket
(weighted by P(decision) for P(red|decision) to avoid overweighting buckets based on
a small number of color decisions), with redder colors indicating more observations.
Observations along the diagonal indicate the model is accurately capturing the exact
proportions of participants making those judgements.

how often participants decided to push either button (indicating they had confidence in a

prediction, r = 0.950, 95% CI = [0.946,0.953]), and if they made a decision, which goal

they believed the ball would go into (weighted r = 0.952, 95% CI = [0.949,0.955]; see

Figure 4.2).4

This also explains why some trials are more difficult than others – on some trials

peoples’ physical simulations almost all headed towards a single target, so evidence

4Many time steps had very few participants indicating any decision, and therefore estimates of the
empirical probability of deciding ‘red’ versus ‘green’ in those cases would necessarily be imprecise.
To adjust for the imprecision in these estimate, we calculated the correlation between P(red|decision)
between participants and the model weighted by the number of observed decisions for that time step (Pozzi,
Di Matteo, & Aste, 2012).
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Figure 4.3: Participants’ average scores on a trial versus predicted scores from the
physical simulation model. Each point represents a single trial. The model was unbiased
and well correlated with participants’ scores (r = 0.90).

would build quickly for that target, leading to a high score, while on other trials the

simulations were more uncertain or might even lead people to believe the ball would

go to the incorrect target. Therefore, the average score earned on each trial by all

of the participants was well correlated with the average score expected if they were

accumulating evidence from simulation (r = 0.90, 95% CI=[0.853,0.934]) and unbiased

(average participant score = 56.9, average model score = 56.2; see Figure 4.3).

In addition, the physical simulation model captured the qualitative dynamics of

many of the trials. On some trials, participants believed that the ball would head to

one target before they switched their predictions to the other target, and in some cases

switched their predictions back again. These decision switch points often occurred at

junctures when ‘surprising’ events occurred – for instance, when the ball hit the corner of

a wall and bounced at an odd angle (e.g., Figure 4.4, top), or narrowly missed a wall (e.g.,

Figure 4.4, second trial from top). Noisy physical simulation explains why people find
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these events to be surprising: stochastic ball paths will often hit the wall at a point that is

not the corner, or will hit the wall instead of narrowly missing it, and therefore after these

events occur, internal physical simulations provide radically different evidence than they

had previously. Therefore, the physical simulation model’s predictions follow both the

time-course and magnitude of participants’ predictions, explaining why some trials are

more difficult for people.

4.4 Alternative decision heuristics

In the preceding section we demonstrated that ongoing human physical prediction

can be well explained using a model of accumulating evidence from a noisy physical

simulator, which suggests that this mechanism underlies physical reasoning. However,

to use this as evidence of the underlying mental processes, we must show not just that

it explains physical prediction well, but that it explains human predictions better than

alternative models. We therefore propose two alternative mechanisms by which people

might make their physical predictions: (1) people still use noisy physical simulations but

base predictions only on instantaneous evidence, and (2) people solely use surface-level

features of the trials to make predictions without relying on physical simulation at all.

These comparisons demonstrate that physical prediction requires accumulating evidence

over time, and that it relies on simulation, respectively.5

5A third alternative that was considered but not modeled was that people keep all prior evidence without
discounting. This assumption was obviously wrong as it could not explain how people switch predictions
quickly midway through a trial – if people had simulated three seconds of the ball going towards the red
goal then simulations switched and began ending on the green goal, it took them significantly less than
three seconds to switch their decisions, suggesting that not all evidence was weighted equally.
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Figure 4.4: Sample trials with changes in confidence. Left: the path that the ball
traveled during that trial, with the numbers representing the time in seconds that the ball
would pass each point. Right: the proportion of people pushing either or no button (top)
or the model’s distribution of belief about how many people should be pushing each
button (bottom) over time. Accumulating uncertain simulation evidence can explain
changes in beliefs well; often these ‘surprising’ moments occur when the ball narrowly
misses or hits a wall, or takes a bounce off of the corner of the wall.
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4.4.1 Instantaneous physical evidence model

We have suggested that peoples’ predictions are based on accumulating evidence

over time. While integrating older information into our predictions can be a useful

way to stabilize those predictions so that they do not vary wildly with new, conflicting

information, it can also cause slower reactions to that new information if the world has in

fact changed. It is therefore important to consider whether we might use only the most

recent simulation information, rather than partially rely on prior expectations.

This alternative is instantiated in the ‘instantaneous physical evidence model.’

similar to the evidence accumulation model, the instantaneous physical evidence model

consists of a physical simulator and a mechanism for making decisions. Here we assume

that people use a similar SPRT decision making mechanism based on the outcome of their

simulations, but that instead of integrating information over time, they take a number

of samples from only the most recent simulation point. However, they use the same

decision rule as the evidence accumulation model: deciding ‘red’ or ‘green’ if the net

evidence exceeds a threshold, and abstaining from a decision if it does not. Similar to the

model with evidence accumulation, we applied a time offset and smoothing to account

for variable time to set up simulations and make a motor response.

4.4.2 Surface-level feature model

While a large set of studies suggest that we use simulation to make predictions

about physical events, there is some evidence that we do so with sparse evidence –

for instance, Hamrick et al. (2015) found that we only need a net evidence of two

simulations in favor of an event to be confident enough to predict that event will occur.

But the evidence accumulation model suggests that we are continuously producing new

simulations. This might therefore be an overly taxing cognitive task, and so we consider
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Table 4.1: Predictors used in the surface-level feature model

Predictor Type Predictor
Trial features Log-area of the red goal

Log-area of the green goal
Log-area of the walls
Proportion of the screen that is clear of any walls/goals
The shortest (non-physical) path from the ball start to the

nearest goal
Whether the shortest path reaches the red or green goal
Whether it is a contained trial

Current trial state Average distance to the goals
Difference in distance to the goals
Offset of velocity vector from the midpoint between the goals
Angular difference between the velocity vector and goals
Smallest difference in velocity vector angle from a cardinal

direction
Total number of walls blocking the goals (in a straight line)
Difference in the number of walls blocking each goal

Prior occurrences Log-time since the start of the trial
Number of bounces the ball has taken so far

whether people might use surface-level heuristics without any simulation to accomplish

this ongoing prediction.

The surface-level feature model was designed as a multinomial logistic regression

to decide whether to predict ‘red’, predict ‘green’, or abstain from pushing any button.

Because there have been no prior proposals of specific heuristics that people might be

using in this task, we included sixteen predictors in this regression that captured a wide

range of potential surface-level features that we believed might impact predictions (based

on general features of that trial, the current state of the trial, and past occurrences; see

Table 4.1). Finally, we applied the same time offset and smoothing as we had for the

other models.
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4.4.3 Model comparisons

The physical evidence accumulation explained participants’ behavior better than

both the surface-level heuristics model (∆LLH = 9,797) and the instantaneous physical

evidence model (∆LLH = 20,943).6

Only the physical evidence accumulation model could explain both when people

would make a decision to push a button (r = 0.950) and which target they believed

the ball would go into (weighted r = 0.952; see Section 4.3.3). The surface-level

heuristics model could explain participants’ decision to make a prediction slightly better

(r = 0.963, 95% CI=[0.961,0.965]), but did not explain as well which target participants

believed the ball would reach (weighted r = 0.890, 95% CI=[0.883,0.897]; see Figure

4.5, bottom). Furthermore, many of the predictors from the surface-level model were

correlated with the evidence accumulation model. For instance, strong predictors for

pushing the red button in the surface-level model were (a) the ball was closer to the red

target than green, (b) it was heading towards the red target but not the green and (c) there

were no walls between the ball and the red target but were walls blocking green – exactly

the conditions when most simulation paths would be expected to reach the red target.7

Conversely, the instantaneous physics model could not explain when partici-

pants would push a button as well (r = 0.931, 95% CI=[0.927,0.935]), but performed

equally well at determining which goal they believed the ball would reach (weighted

r = 0.952, 95% CI=[0.949,0.956]; see Figure 4.5, middle).

Together, these results suggest that noisy physical simulation is required to

determine where the ball will go in the future, and that this evidence accumulates over

time rather than being based only on the most recent simulation. The ability of the

6Because the evidence accumulation model had an equal number of parameters to the instantaneous
physical model, and 24 fewer parameters than the surface-level model, any increase in log-likelihood
would guarantee that the evidence accumulation model would have a lower AIC and BIC, suggesting that
it is the most parsimonious model for the data.

7The converse predictions held true for selecting the green target.
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Figure 4.5: Joint histogram of model (x-axis) and human (y-axis) decisions for all
models, calculated the same as Figure 4.2. Left: the probability of making any guess
(pushing a button). Right: the probability of choosing ‘red’ given a decision. Top:
the physical evidence accumulation model. Middle: the instantaneous physics model.
Bottom: the surface-level heuristics model. Only the evidence accumulation model
could explain both when participants made any guess and which target they guessed.
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surface-level heuristics model to explain the propensity of participants to make any

decision slightly better than the evidence accumulation model suggests that physical

evidence accumulation might not be the sole determinant of participants’ confidence in

their simulations over all trials, but this simulation evidence accumulation process does

explain the majority of how people decide that they are confident enough to indicate their

predictions.

4.5 Discussion

Here we measured how people make and update physical predictions over time,

and demonstrate that these predictions can be explained as people accumulating evidence

from ongoing simulations of how the world will unfold. Furthermore, we show that noisy

physical simulation is required to explain how people distribute their beliefs about what

will happen in the future, and that people update evidence from these simulations over

time rather than instantaneously change their predictions due to updated simulations.

However, while this study finds that ongoing human predictions are consistent

with accumulating evidence from constant simulations, it is possible that the mind takes

many fewer simulated samples to approximate this process. After all, in many cases

a new simulation will provide roughly the same evidence as the preceding simulation,

yet would take additional cognitive effort – constantly re-estimating the trajectory of

a hockey puck slowly sliding towards the goal without interference, for instance, will

likely do little to change your mind once you already believe that the puck will reach the

goal. The mind might exploit these regularities to approximate consistent simulation with

less effort, perhaps only producing new simulations after observing an event unexpected

according to prior beliefs.

In addition, we looked for cases in which people might be making predictions
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by some mechanism other than simulation. We specifically seeded the experiment with

four ‘contained’ trials in which the ball could not reach one of the two targets. Because

this implies that all simulations will always indicate one of the targets, the evidence

accumulation model should perform identically for all of these trials; however, partici-

pants’ responses did differ depending on the scene layout, with participants responding

slightly more quickly than simulation would suggest on one trial, and much more slowly

on another (see Figure 4.6). While this is a qualitative analysis based on limited data

and therefore simply suggestive, it does raise the possibility that people make physical

predictions through multiple routes, including reasoning about containment when it is

easier than physical simulation (e.g. Davis, Marcus, & Chen, 2013). However, more

work is required to explicitly tease apart when people might be using different types of

reasoning.

The information processing required to perform real-time predictions is extremely

challenging, yet people appear to do it with little effort. This work provides a step towards

describing how this is accomplished: we use rich, structured models to determine how

the world might unfold, and regularly update this information in light of changes to

the world. Knowing how we keep in mind and update our predictions is necessary to

understand how we can flexibly plan actions while also reacting to new information, and

therefore how we so capably adapt to the world around us.

4.5.1 Acknowledgments

Chapter 4, in part, is currently being prepared for submission for publication of

the material. Smith, Kevin A; Dechter, Eyal; Tenenbaum, Joshua B; Vul, Edward. The
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Figure 4.6: Contained trials. Left: the path that the ball traveled during that trial, with
the numbers representing the time in seconds that the ball would pass each point. Right:
the proportion of people pushing either or no button (top) or the model’s distribution of
belief about how many people should be pushing each button (bottom) over time. The
model does not differentiate between these trials, since simulation paths will all end at
the red target; however, the speed at which participants responded does change, with
participants faster than suggested by simulation (e.g., second from bottom) or much
slower (e.g., bottom).
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5 General discussion

From a waiter stacking dishes only as high as they will balance, to a pedestrian

crossing the street in front of a car, to a soccer player passing the ball to her teammate,

peoples’ interactions with the world are supported by expectations for how the world

will unfold. I have argued that a core component of building these expectations is a rich

simulation mechanism that extrapolates the future using approximately accurate physical

principles, but must account for uncertainty about the properties of the world. In this

thesis I studied three key facets of this reasoning process: when we use this simulation-

based mechanism as opposed to other forms of reasoning, whether simulations are

themselves stochastic, and how we accumulate information from simulation over time.

The prior literature on intuitive physics has been split, with some arguing that our

physical reasoning is based on approximately accurate simulations, while others suggest

that our core understanding of physical principles is erroneous. I resolved this disparity

by studying when people use accurate versus erroneous principles. Studying peoples’

concepts of a single physical principle (the trajectory of objects in ballistic motion) in

three different ways, I found that when people are confronted with an interactive task,

their predictions are based on accurate physical principles, but when they are asked to

explicitly draw the ballistic trajectory, their predictions are erroneous and idiosyncratic.

This suggests that we have multiple systems we use for physical reasoning, and the

difference between the previously studied errors and our expert behavior is the underlying

95
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mental system we use to support them (Chapter 2).

While prior research suggests that our predictions are variable due to uncertainty

in the world, there has been little study about where that uncertainty comes from: is

it only initial uncertainty about the location and motion of objects that accumulates

noise through deterministic simulations, or are our simulations themselves stochastic?

By studying how peoples’ predictions about where a computerized ball would go in

response to changes in the initial motion and path, I teased apart the contribution of both

initial perceptual uncertainty and dynamic uncertainty that accumulated in the process of

simulation. I found that in addition to uncertainty about the visible properties of objects

(e.g., their exact position and motion) people must account for uncertainty about unseen

properties (e.g., the roughness of the floor may cause a ball to deviate from straight-line

motion). This suggests that our simulations are themselves noisy, perhaps to account for

unknowable deviations in the real world, such as imperfections in a ball causing it to take

an odd bounce (Chapter 3).

Real-world physical reasoning does not occur at a single time, but rather unfolds

along with changes in our environment. It is therefore important to understand how

we use information from simulation over time to inform our predictions, and be able

to explain the timing and evolution of our beliefs. I therefore measured how peoples’

decisions about the future location of a computerized ball would change as they obtained

further information about the ball’s path. I found that the dynamics changes in ongoing

predictions could be explained as consistent accumulation of evidence from their internal

simulation engine, even as the outputs of the simulation engine change in response to

updates to the world. Therefore, our beliefs about the future are a combination of our

prior predictions and new information obtained from regularly produced simulations

(Chapter 4).

While these findings have built a framework for understanding how people
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structure and use simulations to support physical reasoning, a full accounting of how

we reason about the world around us requires tackling further challenges. For instance,

determining how we decide to use simulation-based or other sorts of physical reasoning,

or defining the algorithmic structure of how our physics engines run these simulations.

Understanding these facets of physical reasoning can provide insight into many of the

key questions of cognition, such as how the mind picks a strategy for solving a given

problem, or how it accumulates evidence from complex prediction in an ever-changing

environment.

5.1 Modes of physical reasoning

Although accumulating evidence from simulations can explain many of our

predictions about physical events, this thesis and other work has shown that it clearly

cannot explain the entirety of our reasoning. When we attempt to explain physical

scenarios, our naı̈ve explanations are often erroneous (e.g., Shanon, 1976; McCloskey,

1983), yet our interactions with our environment that rely on the same physical principles

demonstrate a sophisticated understanding of the physics involved (Chapter 2). The

dichotomy between erroneous and calibrated principles depending on the task suggests

that we recruit different systems of reasoning to accomplish explanation versus interaction.

When we can solve problems using scene parsing or reasoning, we may rely on those

capabilities – we abstract rules to shortcut simulation (Schwartz & Black, 1996) or reason

about containment rather than use simulation (Chapter 4, Davis, Marcus, & Chen, 2013) –

again suggesting that there is more than one cognitive mechanism for physical reasoning.

But why would we have more than one system to perform physical reasoning? Why

might these systems rely on different physical principles? And how do we chose which

system to use? These questions that grow out of the confluence of the many threads of
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research that study physical reasoning are an important next step to understand how we

use all available mental tools to comprehend the world.

Differences in behavior when the principle is identical but the task is different

are found in many domains beyond physical reasoning. For instance, when we explicitly

make decisions about monetary bets, our judgments are typically not optimal according

to economic theory, but if we make those same bets via a ‘motor lottery’ (being rewarded

for touching a small target quickly or penalized for missing, so that the outcome is

probabilistic), our behavior is much closer to optimal (Wu, Delgado, & Maloney, 2009).

And this follows a well-known theory in the decision making literature: our fast, intuitive

decisions are often thought to be based on a different system of reasoning than slower,

deliberative choices (System 1 vs. System 2; Kahneman, 2011).

Often these dichotomies are characterized as ‘automatic systems’ (System 1)

and ‘deliberative systems’ (System 2), and this split may be appropriate for physical

reasoning as well. When we are throwing a ball to a friend we are unaware of the complex

calculations that must be done to determine the exact force and angle that we will throw

the ball with, yet when we solve simple high school physics problems many of us are

well aware of the effort that it can take. Thus our ‘approximate physics engine’ may

support automatic interactions with the world, while we need to use more deliberative

reasoning to structure this knowledge into explanations.

5.1.1 Cognitive specialization of physical reasoning

While explicit reasoning about physics appears to be based on general purpose

cognitive mechanisms, the approximate physics engine may be a specialized cognitive

module, similar to language or face processing (Kanwisher, 2010). These specializations

often perform highly complex tasks that we use often in our day-to-day interactions

with the world, and therefore it is useful to have specific machinery that can perform
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this information processing quickly, though it is dedicated to a single task. Planning

our actions around how the world will unfold requires split-second decisions – if we

see a branch falling on us, we need to jump out of the way as quickly as possible – so

attempting to reason about the future using general cognitive processes may take too

long to allow us to survive in the world. Thus by having a specialization for physical

reasoning, we are more easily able to plan our actions in a timely fashion.

Cognitive specializations typically have two common features. First, there are

often regions of the brain that respond selectively when those modules are active –

for instance, areas such as the temporo-parietal junction for theory of mind (Saxe &

Kanwisher, 2003) or the fusiform face area for facial processing (Kanwisher, McDermott,

& Chun, 1997). This would imply that a specialized brain area for physical simulation

should exist, and indeed there is preliminary evidence that a set of brain regions in parietal

and premotor cortex may underlie this type of physical reasoning (Fischer & Kanwisher,

2015).

Second, the modules typically are cognitively impenetrable – we cannot introspect

into how they function. Just as we cannot explain how we conjugate verbs while speaking

or what configuration of features makes something ‘face-like’, we cannot explain the

rules that we use to update our simulations. In Chapter 2, I demonstrated that we at some

level have access to accurate principles of ballistic motion, but when asked to explicitly

note them through a drawing we display errors, suggesting it is not possible to directly

query the workings of our simulation systems. This impenetrability might be due to

the specialized nature of the processing – if these processes use specialized, efficient

neural codes that cannot easily be interpreted by other high-level reasoning systems, or

the underlying brain regions only send processed information to other areas of the brain,

then introspection about the functioning of these regions should be impossible. Thus the

specialized nature of physical processing might explain why we cannot reason about how
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we perform simulation.

While it is too early to claim that physical reasoning is a cognitive specialization

(and it is still under debate whether any specialized cognitive systems exist – e.g., Huth,

Nishimoto, Vu, & Gallant, 2012), this is a domain of knowledge that is a good candidate

for specialization: physical reasoning underlies a wide variety of our interactions with

the world (suggesting common usage), the simulation is cognitively impenetrable, and

there is initial evidence that we have brain regions dedicated to physical reasoning.

5.1.2 Miscalibration of explicit knowledge of physics

Just because our explicit knowledge of physics utilizes a different system of

understanding than physical simulations, it is not inherently obvious why our naı̈ve

theories should be erroneous. After all, if we base our theories on observations of the

world, those observations are rooted in accurate physics. If we base our theories on what

we imagine might occur in the world, then despite the cognitive impenetrability of the

simulation system the imagined outcomes should also be accurate. Our errors therefore

cannot come solely from our observations or imaginations, but rather must arise from

biases in the process of interpreting these observations.

It is possible that these biases occur from generalizations about ourselves versus

the external world. Many researchers claim that explicit physical reasoning is a process of

analogy: solving problems in front of us by directly transferring the outcomes of similar

situations we have observed in the past (Catrambone, Jones, Jonides, & Seifert, 1995),

or learning general rules by abstracting between multiple related situations (Forbus &

Gentner, 1986). But our own experiences are asymmetric, with our bodies providing us

with privileged information about the forces involved when we touch or push an object.

White (2012) suggests that this can explain certain ‘impetus theory’ beliefs: for instance,

we often have to continually apply a force to an object to slide it along the floor, so
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we explain that as force (‘impetus’) causing velocity (instead of acceleration) and then

believe that removing this force will cause motion to fade. Thus because we have some

sense about how our interactions with the world ‘feel’ to us, we inappropriately use these

observations to explain external motions.

5.1.3 Extracting accurate physical explanations from simulation

Although we cannot introspect about the rules that underlie physical simulation,

we can still use this system to improve our explicit reasoning by imagining a physical

event before making a verbal judgment about it. For instance, when people are asked

about the relationship between pendulum length and period, they are typically inaccurate,

but if they are asked to imagine the pendulum in motion first, their accuracy increases

significantly (Frick, Huber, Reips, & Krist, 2005). Thus even though the rules of

simulation are cognitively impenetrable, we can still access accurate mental imagery of

physical scenarios that can be used in our explanations.

Schwartz and Black (1996) demonstrated that we can go beyond simple obser-

vations of our imaginations to abstract rules from simulations. They showed that when

people are given word problems about gears (e.g., “If there are five gears lined up in a

row and the leftmost gear turns clockwise, what will happen to the rightmost gear?”),

initially they would use mental simulation to solve these problems, but given many similar

problems they would eventually supplant these simulations with rules (e.g., “If there are

an odd number of gears in a line, the leftmost and rightmost gears will turn in the same

direction”) and be able to respond significantly more quickly. Indeed, imagination plays

an important part in modern techniques for teaching physics: introductory students are

encouraged to learn basic principles by imagining how events that rely on those principles

might play out, such as learning about inertia by imagining the feeling of stopping a large

moving object (Helm, Gilbert, & Watts, 1985).
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But if imagining physical events can correct for erroneous conceptions, then

why do we continue to hold these incorrect explicit principles? Why do we not simply

simulate an event before we provide an explanation for it? Understanding why we choose

to use explicit reasoning versus physical simulation can help to resolve these questions.

5.1.4 The choice of physical reasoning systems

How we select which mental algorithm to use to solve arbitrary problems is a

significant open question. Gershman, Horvitz, and Tenenbaum (2015) suggest the mind

accomplishes this task by estimating the expected value of any given strategy (including

the value of the correct answer, and the costs of waiting to provide that answer), then

selecting the strategy with the highest expected value. However, this in turn requires a

way of estimating the probability of getting a useful answer from a strategy before that

strategy is applied, as well as how much effort would be required to produce that answer

– a necessarily heuristic-based estimation.1

Whether this estimation tips in favor of the simulation system or explicit system is

therefore very dependent on the goals of reasoning and the task environment. Depending

on the heuristics for determining costs and benefits, this could lead us to produce incorrect

answers in situations where accuracy is not critical. In an experimental study of naı̈ve

physics, participants who are asked to explain a physical principle are encouraged to

convey an accurate picture of how the world works but there is no additional incentive

for accuracy over an incorrect explanation – participants in Chapter 2, for instance, did

not receive a monetary bonus for providing the correct drawing. Even if we know that

producing an answer based on mental imagery of the event would be more likely to

be accurate, if the costs of simulation outweigh the costs of determining the principle

1Although I argue that the principles of simulation are cognitively impenetrable, this does not imply
that the expected costs and benefits are too. Even if we cannot introspect into how the system works, we
can still take note of whether it provides us with useful information and how cognitively effortful it is.
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explicitly, we may still choose the less accurate explanatory system if there is enough of

a difference in effort.

But this theory assumes that simulation is more effortful than explanation, while

intuitively simulation seems relatively effortless when we try to interact with the world.

Perhaps a key difference is that it is effortful to set up a model of the world de novo:

when we perform interactive tasks we already have information from our perceptual

system that can initialize our simulations, whereas when we see a diagram or hear a

verbal explanation we must construct a model of the world from scratch. This can explain

why making judgments about the naturalness of an object’s path is more accurate than

picking out the very same path diagram (Kaiser, Proffitt, & Anderson, 1985; Kaiser,

Proffitt, Whelan, & Hecht, 1992), since it is easier to simulate the path given the existing

motion and compare the observed motion to those simulations than to set up a simulation

without perceptual information and compare that path to a static diagram. However,

given this theory we would also expect to see more accurate judgments in Chapter 2

when people drew trajectories after observing the system in motion; this might suggest

that our heuristics for determining what system to use are in some cases suboptimal,

or the enforced stop in the motion before asking participants to draw might have made

simulation more difficult.

Therefore, an important line of research to understand physical reasoning is how

these two systems trade off with one another. This thesis used simple dichotomies such

as assuming interactive tasks would tap into simulation, while explicitly noting physical

principles would tap into the explanatory system. However, the process by which people

decide to use one system of physical reasoning over another is largely unknown. By

studying how the mind assigns costs and benefits to each of these strategies across a

variety of scenarios, we can discover not just how we decide to approach problems of

physical reasoning, but can also shine light on the general process of ‘meta-reasoning’
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about the cognitive strategies we use.

5.2 Approximations of physics

Throughout this thesis, I have argued that peoples’ simulations are based on an

‘approximate physics engine.’ However, there are many different types of approximations,

and to determine how we approximate physics requires answering many additional

questions about the underlying cognitive processes. There are two types of approximation

that need further study: approximations to the physics underlying the simulations, and

approximations to probabilistic reasoning involving these simulations.

5.2.1 Approximations of physical principles

At its core, all of physics is an approximation to how the world works. Newtonian

mechanics is very accurate for objects that we typically experience, but in the end is

the result of many particles following the laws of quantum mechanics, and falls apart

when objects are moving near the speed of light and relativity takes over. And many

phenomena within the realm of Newtonian mechanics are simply the result of statistical

regularities that can never perfectly describe the state of a system (e.g., fluid dynamics).

Thus the question is not whether our internal models perfectly accurately capture the

state of the world (they cannot), but rather how our internal models produce predictions

that closely match the future.

However, there are multiple ways that a system might simulate approximately

correct physical events. For an example of this we can look at the choices that go

into computer physics engines, all of which are built to approximate physics in ways

mostly undetectable to people. With only a simple rigid-body physics engine, there are

a multitude of core choices to make (Millington, 2010): how much time should pass
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in a basic iteration between checking for collisions? Should simultaneous collisions be

determined and resolved all at once, or sequentially? Are changes in motion calculated

using forces or impulses? And these decisions only become more complex when we need

to model soft-bodied objects (such as cloth) or fluids (Nealen, Müller, Keiser, Boxerman,

& Carlson, 2006).

Fortunately, recent work has begun to investigate the structure of physical sim-

ulation. Collisions between objects, for instance, are very important. They are a core

component of human physical conception (e.g., even newborns have a concept of solidity

– that two objects cannot occupy the same space at the same time; Spelke, Breinlinger,

Macomber, & Jacobson, 1992), and the choice of how to resolve collisions is one of the

key decisions when designing a computer physics engine. Hamrick, Smith, Griffiths, and

Vul (2015) have recently found that the process of determining how a ball will bounce

off a wall (resolving that collision) takes additional time for people to process above and

beyond extrapolating straight line motion. This finding is backed up by eye-tracking

studies – Crespi, Robino, Silva, and de’Sperati (2012) found that if people view a short

clip of the motion of a billiard ball and are asked to predict whether that ball would

eventually pass over a specific spot on the table, people’s eyes will follow the trajectory

of the ball but will typically look more often at the sides of the table where the ball would

bounce. Thus, just like with computer physics engines, resolving how two objects collide

appears to require more processing from people than simple linear motion extrapolation.

Similarly, we must simulate fluids and be able to differentiate between types of

liquid – for instance you might be more concerned if you spilled a cup of coffee near a

stack of your papers than if you spilled a jar of honey, because the viscous honey might

not flow far enough to ruin your work. While people can differentiate features of liquid

based on low-level visual information (Kawabe, Maruya, Fleming, & Nishida, 2015), this

would not explain how we might predict the flow of those liquids in the future. However,
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Bates, Yildirim, Tenenbaum, and Battaglia (2015) recently demonstrated that peoples’

predictions about how different types of liquid would splash and flow through a set of

obstacles could be well explained by a computer physics engine that uses a limited set of

weakly connected ‘particles’ to simulate fluid dynamics, but not by shallow heuristics

or deep learning mechanisms. This suggests a plausible algorithm that we might use to

simulate the motion of fluids.

But while this recent work has begun to describe the structure of simulation,

a large number of core questions remain. For instance, how well do our physical

computations scale with complexity? How do we choose what parts of the world to

incorporate into a specific simulation? And how fine-grained is the temporal resolution

of our simulations? Answering these questions will bridge the gap from explaining what

we accomplish with physical simulation to how we do it, and provide further answers

into how the mind conceptualizes the world.

Complexity limits in simulation

Most research finds that our visual working memory is extremely limited – that

we can only remember the specific properties of about three or four objects at a time

(Luck & Vogel, 1997). Yet there are many cases where we reason about physical events

that involve many more than four objects interacting. For instance, Battaglia, Hamrick,

and Tenenbaum (2013) asked people to judge the stability of towers that could have

ten or more independently moving blocks, and if we hope to simulate how a bucket of

marbles dumped on the floor will behave, the number of objects simulated might reach a

much greater number. But how is this possible if we can only account for four objects at

a time?

One possibility is that we group objects into larger, connected objects based on

heuristic assessments of how they might move. For instance, if we are simulating how a
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tower of blocks might fall, we might group a set of blocks together as the ‘base’ of the

tower and treat that as a single object. Similarly, as we simulate marbles falling from a

bucket, we might not treat them as separate entities, but rather assume that each marble

is just part of a flow of objects. But how we decide to group objects in this way is still an

open question.

However, a hint of how this might occur comes from more recent research into

visual working memory. There is evidence that the low memory capacity estimates are

due to the independence of objects enforced in these experiments – memory for color,

for instance, is typically tested by asking people to remember a number of independently

determined colors. But objects in the world typically are not as disjoint as these artificial

stimuli, and people are much better at remembering objects if there is some degree of

regularity to them (Brady, Konkle, & Alvarez, 2009). It is thought that we can do so

by forming hierarchical representations of objects, and therefore remember ensemble

representations (e.g., the average position and spread of a cluster of dots) rather than

representing every item individually (Brady & Alvarez, 2011). Our ability to extract

ensemble statistics extends beyond simple spatial information, allowing us to extract

complex properties from sets of objects such as the average emotion in a crowd of faces

(Haberman & Whitney, 2007).

Thus it is possible that this ensemble representation can explain complex physical

simulation: to simulate the bucket of marbles, for instance, we cluster all of the marbles

together based on similar properties and starting conditions, then simulate the motion

of the ensemble rather than each individual object. The rules of this simulation would

necessarily be different from the rules that govern simulating individual objects, as

these would require simulating not just how the ensemble moves, but how it spreads out

over time – especially as the marbles hit the floor. To perform this sort of simulation,

we would need to extract ensemble information about physical properties, such as the
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average and variability of kinetic energy the marbles have at the point of collision, and

use physical principles that approximate statistical mechanics to predict the future based

on that ensemble information. However, there have been relatively few studies of how

we conceptualize the motion and physics of a large set of objects (aside from judging

direction of motion in random dot kinematograms). It is therefore an empirical question

of whether we can (a) extract ensemble physical properties like energy, momentum, or

acceleration, and (b) use that information to extrapolate the future state of the world.

Understanding how we might compress our representations of sets of objects to efficiently

predict the motion of multiple objects is therefore key to understanding how we represent

physical rules in real-world scenarios.

Choices of simulation contents

When initializing a simulation, an important consideration is what parts of the

world to include in the simulation. While most experimental studies make this a trivial

problem – the relevant information is given on the computer screen or on the page in all

of the experiments in this thesis – it is not clear how we set this criteria in our day-to-day

lives when the relevant information is less obvious. If you are throwing a ball to a friend

in the middle of a field, for instance, it seems unnecessary to consider how a tree fifty

feet to the side might affect the trajectory of the ball. On the other hand, if that tree is

just a few feet to the side, it would be important to consider that the ball might hit an

overhanging branch. How then might we choose when it is appropriate to include an

object in our simulations, and when it is unnecessary?

One possible consideration is proximity: if you are throwing a ball to your friend,

then we can a priori determine that the scale of simulation is somewhat larger than the

distance between you and your friend, and therefore all objects within that distance

might be considered important for simulation. On the other hand, if you are bowling,
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the relevant distance would be that of a bowling lane, or if you are trying to pour coffee,

the relevant scale would be the distance between the carafe and the coffee cup. Under

this account, an area is selected based on the ultimate goal of simulation, and all objects

within that area are included in the simulation.

Another possibility, however, is that objects are dynamically added to the simula-

tions. Perhaps we start by simulating the bare minimum required to achieve our goals:

just your friend and the ball if you are playing catch. This simulation can then be checked

against objects in the world, and if the path of the ball would intersect with or pass nearby

other objects (e.g., a tree), that object is added to future simulations. While this process

incurs more work to check simulations against the world, it can also save on the effort of

simulating the motion of objects that will in the end not affect our greater goal.

However, while these proposed approximations will carve out a section of the

world for simulation, they both would miss far-away moving objects that will later

intersect with the path of the important objects. If you are bowling, the apparent scope of

simulation might be your bowling lane, but if someone to the side throws the ball wildly

and it is bouncing across a number of lanes, it is important to consider how it might

impact your toss. This leads to a circular question: how do you know that the ball will

cross your lane without simulation, but how do you know that it is important to simulate

it until you theorize it might cross your lane? It is therefore an open question of how

we might determine outside moving objects, or whether we even can in the absence of

something to draw our attention to them.

The extent of extrapolation

Our simulations cannot go on forever; instead there must be a limit to how far we

can extrapolate the motion of objects (either in time, or in distance). This problem itself

encompasses two core unknown features about simulations: how far into the future do
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individual simulation paths go, and how far into the future can we push our predictions.

In all cases of physical simulation, we must determine when to end any given

simulation path. With certain goal directed simulations, there is a natural endpoint –

for instance, when the ball crosses the plane of the bucket or paddle in Chapters 2 & 3,

or when it reaches one of the two targets in Chapter 4. But even this cannot be a hard

rule, since an individual simulation path might wander for a long time before reaching a

goal. And this becomes more difficult for less constrained problems where an obvious

endpoint does not exist. If we want to know where a moving object will come to rest, for

instance, it is impossible to a priori know how far or how long it will travel. To avoid

wasteful simulation, we might therefore cut off simulations that are less likely to provide

us with relevant information. Perhaps we set a time cutoff, so that simulations that take

too long to provide us with useful information are thrown away, but this leaves open the

question of how we decide what this time cutoff should be. Perhaps this cutoff is tied to

the choice of simulation contents, so that if an important object leaves the relevant area,

we cannot extract useful information from that simulation and therefore ignore it. Or

perhaps this is just an inherent limit of our cognitive machinery – there is only so far into

the future that we can drive a simulation, but this will differ depending on the complexity

of the situation. Determining how our individual simulations are limited is therefore an

important component to understanding the process of physical reasoning.

At a higher level, we can only predict the motion of objects so far into the future.

This is of course limited by how far our simulations can run, but our predictions might fall

apart before any limits of individual simulations. Another limitation in our predictions

might be the variability between simulations – if uncertainty about where any object

will go is too great beyond a certain distance, we would do just as well to say that we

have no idea of its future position. For instance, if you were to be asked about where an

object falling down a long set of stairs would end up, it is easy to predict the motion of
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a solid box (it will likely just tumble to the foot of the stairs), but trying to predict the

same for a rubber ball would be nearly impossible, since there is so much noise in the

way that it might bounce. Yet if you were asked to predict that rubber ball’s motion after

two steps, this might be difficult but doable. Studying the amount of uncertainty that can

accumulate before prediction becomes impossible will help set limits on how far into the

future we can set our predictions using simulation.

Temporal resolution of simulations

A final important consideration in physics simulations is how frequently the

world is updated: if there is only a very short period over which the world is updated

between checks for interesting events (e.g., collisions) then many needless checks will be

made, but with too much time between checking for events where we approximate object

motion with ongoing dynamics we might miss something important (e.g., two objects

moving perpendicular then colliding).

Determining how much time should pass between resolving collisions is an

important part of a computer physics engine. Many physics engines use a fixed timeframe

for making updates for computational simplicity (Millington, 2010). However, this is

not the only way to set the temporal resolution of a simulation engine – for instance,

two-phase collision detection algorithms check quickly if objects’ trajectories will bring

them close to each other, then slowly check for actual collisions (Mirtich, 1997), while

time-division engines will try to find the moment of first contact between two objects

rather than working at a fixed scale (Millington, 2010). The many options available for

computer physics engines suggests that there are many possible ways that the mind might

treat the temporal resolution of its physical simulations.

The method of determining how far apart these detections are spaced will affect

the amount of physical approximation required between these steps, and therefore the
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potential errors that might arise from simulation. Therefore, studying the temporal

resolution of our approximate physics engines – whether that resolution is fixed or

variable, and how it is determined – is important for understanding both the amount of

effort underlying simulation and the types of approximation errors we might make.

5.2.2 Approximations to probabilistic reasoning

I have also argued that physical reasoning accounts for various sources of uncer-

tainty, and this uncertainty causes our predictions about the future to be probabilistic,

weighting various outcomes by how likely they are to occur. For instance, Smith and

Vul (2015) demonstrate that our confidence in our physical predictions is correlated with

the variability in predictions across people, and so it is likely that this well-calibrated

meta-knowledge of our own uncertainty is formed from a probabilistic distribution over

possible future world states.

However, producing a complete, continuous probability distribution over all

possible future world states is computationally intractable. Because our physical updating

is dynamic (Chapter 3), the only way to produce a single possible future is to iteratively

update our simulations. Thus most recent physical simulation work (including this thesis)

has used Monte Carlo simulation to extrapolate the future under uncertainty – this forms

a posterior probability distribution by sampling potential current states of the world

(weighted based on the present uncertainty), then running the simulation based on those

starting conditions and tallying how often the simulations end up in a given state (e.g.,

where the ball would cross the plane of the bucket in Chapter 2, or whether the ball landed

in the ‘red’ or ‘green’ goals in Chapter 4). In the limit of taking an infinite number of

samples, this would produce the exact posterior probability of a physical event occurring,

but even with a limited number of simulations, this probability can be approximated.

Of course, it is impossible to create an infinite number of different simulations
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within a finite time. Instead, the cost of taking each additional sample (in mental effort

required to produce that sample or opportunity cost of not acting) must be weighed

against the expected benefit of the additional information that sample might provide

(Vul, Goodman, Griffiths, & Tenenbaum, 2014). If producing a simulation is cognitively

effortful and the benefit of making the correct prediction is low (for instance, in the middle

of a psychology experiment where there is no remuneration for accuracy), then people

may take only a small number of samples before deciding to act on that information.

Indeed, Hamrick et al. (2015) suggest that when presented with a dichotomous prediction

(whether a ball will travel through a hole in a wall or not), people perform simulations

only until there is a net evidence of just two samples in favor of one of the options. Thus

the probabilistic machinery underlying physical reasoning may be based on extremely

coarse approximations.

But if people use very few simulations for physical reasoning, then how can this

explain the constant updating of predictions observed in Chapter 4? Although peoples’

behavior was consistent with producing new simulations on a regular basis, most of the

time an additional simulation would provide little additional information: the probability

of a ball reaching one target is unlikely to change much if all the ball has done is moved

slightly along a straight line. Instead, simulation outcomes generally changed only after

what we would consider to be an event – for instance, the ball bouncing off of a wall, or

narrowly missing a wall we expect it to hit. Therefore, to save effort, the mind might

produce new simulations only when it expects the outcome to be different from the past

simulations – after a collision, or when prior simulations are no longer good descriptions

of the current state of the world, for instance.

A hint of how this might be possible comes from approximations to probabilistic

reasoning within the domain of machine learning. Many object tracking programs in

computer vision must account for the fact that their localization of objects within each
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picture frame will necessarily be noisy or unknown due to occlusion. Therefore, to gain

certainty in object localization, these programs use not just current noisy observations,

but also the expected position of the object from prior observations and associated

dynamics. Because this is a computationally difficult problem, it is often approximated

using particle filters – proposing a limited number of possible object positions (particles),

extrapolating their motion, then comparing those expected positions to noisy observations

and allocating more belief to those particles that are closer to the noisy observation

(Doucet, De Freitas, & Gordon, 2001). This algorithm has had success both in computer

tracking algorithms (Okuma, Taleghani, De Freitas, Little, & Lowe, 2004), and has

been proposed as a model for how people track multiple objects (Vul, Frank, Alvarez, &

Tenenbaum, 2009).

The motion extrapolation required for this tracking is very similar to the noisy

Newton framework, albeit at a more limited scale. If people do track objects by keeping

in mind a limited number of plausible locations and where those objects will go, then

predicting motion over time might rely on a similar process: proposing a handful of

plausible trajectories for how an object will move over time, and allocating belief to

those trajectories based on how well they describe the observed motion as the world

unfolds. This might explain why our predictions change after a ‘surprising’ event without

requiring constant re-simulation: typically, our predictions will be good enough that we

have no need to form new proposed trajectories, but if an event produces object motion

that is very different from the prior proposals, we will decide that our past predictions

are no longer good enough and need to form new simulations to update our predictions.

While this is just one proposal for how we might efficiently approximate probabilistic

physical reasoning, we can study how we save effort in physical simulation and propose

other approximations by tying together theories from machine learning and psychology.

Physical reasoning is a domain in which updating our predictions in concert with
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changes to the world is a core requirement. But physical simulation is computationally

taxing, making approximations all the more important. Studying how people accomplish

this complex task both efficiently and effectively can provide insight into the general

algorithms that the mind uses to approximate probabilistic reasoning.

5.3 Conclusion

Physical reasoning pervades our daily experiences so much that we barely notice

it, yet relies on complex mental operations to accomplish. This thesis provides an initial

framework that explains how people use this reasoning to understand and interact with the

world: when we engage with the world we support our reasoning with relatively accurate

physical simulations, given uncertainty about the properties of the objects we simulate.

Fully describing human physical simulation will require significant research into the

underlying cognitive processes and neural bases, guided by knowledge of computer

physics engines as plausible algorithms for the underlying simulations. To expand

this knowledge to the whole of physical reasoning will require studying how physical

simulation and explicit knowledge interact with one another, and how we decide which

system of reasoning to use. But despite the long road ahead, understanding this process

will allow us to explain a core facet of the human experience and provide insight into the

processes the mind uses to build an understanding of both the current environment and

the future.
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A Supplemental materials for

Chapter 2

A.1 Model details

Here we discuss the mathematical formulations behind the model predictions of

physical reasoning. The models were split into two components. The first component is a

forward model that can be thought of as a function R(trel,y) which returns the predicted

position where the ball would cross a line at height y if released at time trel . Note that

this function does not in of itself make any claims about how prediction works, but can

instead be set for any assumption about how people extrapolate the motion of the ball.

The next component, the task action, uses this function to determine where to place the

bucket in the catching task, or when to release the ball in the releasing task.

A.1.1 Forward models

Noisy Newton

The noisy Newton forward model captures the position and velocity of the ball at

the moment of release, and uses Newtonian ballistic motion equations to extrapolate the

path of the ball:

119
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x(t) = x0 + vx0 ∗ t

y(t) = y0 + vy0 ∗ t +
g∗ t2

2

(A.1)

The forward model then returns the x position of the ball when it reaches the

vertical position of the bucket.

However, people must also judge the depth of the pendulum behind the computer

monitor. The inverse relationship between cord length and gravity given a constant

pendulum period means that estimating depth (and thus pendulum length) with constant

gravity is mathematically equivalent to assuming a constant cord length and estimating

the force of gravity. Because responses were measured using a constant unit of on-screen

distance (in pixels), for computational efficiency the noisy Newton model assumed a

constant cord length and estimated the effective strength of gravity in px
s2 .

Non-physical models

Each of the non-physical models assumed that the ball would travel in a straight

line from its release point as an angle away from the vertical (θr). Each of these release

angles was calculated as a function of the angle the pendulum cord made with the vertical

at the moment of release (θc).

The angled forward model calculated the release angle as a piecewise linear

function of the cord angle. There were two intercepts and two slopes for this function, so

that the ball would travel differently depending on whether it was swinging downwards

or upwards:1

1These angles were mirrored when the ball was traveling leftward for symmetry
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θr =


i1 + s1 ∗θc if θc > 0

i2 + s2 ∗θc otherwise
(A.2)

The outward model assumed that the ball would continue along the path of the

cord, but allowed for the angle to shift upon release. Thus the ball angle was calculated

to be the same as the release angle, with an adjustment:

θr = a∗θc (A.3)

The straight down model simply assumed that the ball would drop upon release:

θr = 0 (A.4)

Once the path of travel was calculated, the model predicted the landing position

of the ball as the horizontal position of where the path line intersected the plane of the

bucket.

A.1.2 Task actions

Catching

We assume that the best location to place the bucket to catch the ball would be

where the forward model suggests the ball will land. However, people must account for

both motor and extrapolation error, which we formalized as Gaussian noise. This noise

increased linearly with the vertical distance between the bucket and release height of

the ball (htr), and we fit two free parameters to capture the slope and intercept of this

relationship:
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σtr = ac +bc ∗htr (A.5)

Thus the choice of where to place the bucket on the catching task (S) on a specific

trial can be described by:

Str ∼N (R(ttr,ytr),σtr) (A.6)

Releasing

In the releasing task, we assumed that people would have a reasonable sense of

where the ball will go if released at each point in time. Similarly, the model can use

its forward predictions to determine at each point in time where the ball would land if

released from the cord.2 From this information, we can form a function over possible

release times that returns 1 if the model will land in the bucket, and 0 otherwise:

L(t)tr =


1 if R(t,ytr) ∈ buckettr

0 otherwise
(A.7)

The optimal time to release the ball (Tdec) was assumed to be the middle of any

contiguous time period in which L(t) = 1. If there were two optimal release times (T1

and T2), the model probabilistically chose one, preferring the point with the smallest

vertical distance to the bucket. This choice was formalized as a logistic function on the

difference between the ball heights at each point (h) with a single scaling parameter (sr),

but no intercept shift (since we assumed that at equal heights, participants should be

ambivalent about which time to choose):
2This was approximated analytically by determining R(t,ytr) for all t segmented in blocks of 10ms.
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p(T1) = logistic(sr ∗ (hT1−hT2)) (A.8)

Once the model chooses the time point that it aims to cut, its actual release time

for a trial (Trel) was selected as value from around that choice with Gaussian noise fit as

a free parameter (σterr) to reflect the motor errors that people make:

Trel ∼N (Tdec,σterr) (A.9)

A.1.3 Parameter fitting

For all models, parameter fitting was accomplished by maximum likelihood

estimation on individual trial data. For a given set of parameters, the models determine

the mean and variance of bucket positions for the catching condition, and of release

timing in the releasing condition. Because forward model parameters were shared across

both tasks, we calculated the likelihood of a given set of parameters as the combined

likelihood of all responses for both the catching and releasing tasks. Responses were

aggregated over participants for general model comparison, but split by participant for

the individual model fitting.

A.2 Supplementary results

A.2.1 Exclusion principles

To ensure that we were measuring the physical principles that people use when

interacting with the world, we want to exclude participants who were not actually carrying

out the task (due to inattention or laziness). To determine whether participants were

making an effort, we asked how reliably their responses on the catching and releasing
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Figure A.1: Measures of the coefficient of determination for each participant in both the
catching and releasing tasks. Each point represents a single participant. Three outliers
(marked in red) were eliminated because those participants demonstrated poor response
differentiation by trial.

tasks were affected by trial type. We measured this as the coefficient of determination

(R2) of an ANOVA predicting each individuals catching and releasing responses as a

function of the 48 trial types, which measures how much differentiation by trial exists.

Most participants responses varied significantly by trial, with high average coefficients

of determination (catching: R2 = 0.83; releasing: R2 = 0.84); however, there were

three participants whose responses were significantly less differentiated than all others

(catching R2 = [0.23,0.29,0.67]; cutting R2 = [0.26,0.34,0.39]; see Figure A.1) we

eliminated those three participants from all other analyses. Because this metric did not

make any assumptions of how participants varied by trial, but rather only if they varied,

we viewed this as an appropriate exclusion criterion that would not a priori favor any of

the possible models, accounts, or hypotheses.
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Figure A.2: Histogram of error correlations between each subject and all other subjects
across all three tasks in Experiment 1. There was low variability in error correlations
on the catching and releasing task, while the drawing error correlations suggested
idiosyncratic reasoning.

A.2.2 By-subject, by-task error correlation

In order to measure the consistency of responses across participants, we reported

the correlation between individual participants’ errors and the errors of all other partici-

pants. This was trivial to calculate for the catching and releasing tasks; however, for the

drawing task we generated matched data by extrapolating drawn trajectories to produce

equivalent ‘bucket positions’ as if they were guided by their drawings.

As can be seen in Figure A.2, any participant’s responses on the catching or

releasing tasks could be well predicted by how all other participants responded in Ex-

periment 1. However, participants were significantly more variable on the drawing task,

suggesting that these conceptual responses were in general more idiosyncratic.

Drawing extrapolations from Experiment 2 show similar variability to the draw-

ings from Experiment 1, as can be seen in Figure A.3. With all stimuli included,

participants from the Static condition are more correlated with others from the Static



126

Figure A.3: Plots of correlations between each participant’s extrapolated drawings and
the average of all other subjects (split by condition) from Experiment 2. A: Including
all stimuli. B: Excluding the nadir stimulus.

condition, and vice versa for the Motion condition (in Figure A.3A, Static participants

tend to be below and to the right of the identity line, which Motion participants tend to be

above and to the left). However, this higher correlation for one’s own condition is driven

almost entirely by the nadir stimulus.

A.2.3 Learning

Although we hid all ballistic trajectories with the exception of one sample trial

each in the catching and releasing tasks, it is possible that participants were learning from

the binary feedback provided, perhaps by trial and error. Learning the correct response

pattern could bias the results to be more ‘Newtonian’ even if knowledge is based on

simple model-free predictions.

We measure learning as decreasing error (relative to ground truth) over the course

of the experimental session. There is no evidence that the average participant was learning
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in either the catching (b = −0.0028 cm/trial, t(16.2) = −1.39, p = 0.18) or releasing

(b =−0.0010 cm/trial, t(30.2) =−1.03, p = 0.31) tasks; over the course of the 240 trial

experiment, this would amount to just a 0.66cm decrease in error on the catching task

(15.7% of the average error), and 0.25cm decrease in error on the cutting task (7.3% of

the average error). Therefore it is unlikely that people were behaving in line with the

noisy Newton model due simply to model-free learning.

A.2.4 Individual model fitting

Twenty-eight of thirty-two individual participants were best fit by the Newtonian

model rather than an alternate. Here we report how good these individual fits were. As

can be seen in Figure A.4, the participants whose predictions were better explained by

alternate models were only marginally better explained, whereas for most subjects the

Newtonian model explained behavior significantly better than any alternatives.

A.2.5 Predicted response variability

The task action assumptions directly influence the amount of response variability

expected by each model. Therefore a good test of whether these assumptions are rea-

sonable is to determine whether they predict the trial-by-trial variability in an unbiased

model. Because the noisy Newton model is nearly unbiased, we used it as a comparison

point. The trial-by-trial variability predicted by the model was well correlated with

participants actual variability (catching: r = 0.79, releasing: r = 0.82), suggesting that

the task actions posited for the model do a reasonable job of capturing how participants

were performing each of the two tasks.
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Figure A.4: Individual model comparisons. Each point represents a separate participant,
comparing the BIC of the noisy Newton model fit to their data (x-axis) versus the BIC
of the best alternate model (y-axis). Because lower BIC suggests a more parsimonious
model, participants above and to the left of the identity line have responses characterized
best by the noisy Newton model, while those below and to the right are best characterized
by an alternate model. In general, the noisy Newton model characterized responses
much better than alternatives.




