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The Final Frontier: Embedding Networked Sensors in the
Soil

Nithya Ramanathan, Tom Schoellhammer, Deborah Estrin, Mark Hansen,
Tom Harmon, Eddie Kohler, and Mani Srivastava

Center for Embedded Networked Sensing, UCLA

Abstract improve the network yield, the percent of expected data

This paper presents the first systematic design of a robostrge _that IS coIIecteo_I at the basestatl_on. O_ur wireless deplnyme
system suited for the challenges presented by soil envieotsn in Bangladesh incorporated a disruption-tolerant netimork
We describe three soil deployments we have undertaken: in layer to maximize _netvyork y'EId'. This deployment achieved
Bangladesh, and in California at the James Reserve and in a 91% delivery ratio without relying on latency- and power-
the San Joaquin River basin. We discuss our experiences and  consuming end-to-end reliability.

lessons learned in deploying soil sensors. We present data f
each deployment and evaluate our techniques for improvieg t
information yield from these systems. Our most notable ltesu
include the following: in-situ calibration techniques tosppone
labor-intensive and soil disruptive calibration eventvedeped

at the James Reserve; achieving a 91% network yield from a
Mica2 wireless sensing system without end-to-end reitgbih
Bangladesh; and thgvelin, a new platform that facilitates the

e Maximizing interactivity. We evaluate the impact of
interactivity, or taking actions as soon as possible, on
information yield. For example, collecting physical saewl
from the field for lab testing when sensors recorded
questionable data enabled us to validate potentially yfault
nitrate and chloride data and increase our sensor yield %y 51
from these sensors.

deployment, replacement and in-situ calibration of soiisses, Based on our experience, we have designed jdvelin,
deployed in the San Joaquin River basin. Our techniquestease a platform for very wet soils or shallow groundwater that
information yield have already led to scientifically promip enables sensor interactivity by minimizing soil disturban
results, including previously unexpected diurnal cyclesarious during deployment, and facilitating the deployment,
soil chemistry parameters across several deployments. replacement and in-situ calibration of sensors.

1 Introduction Due to the success of our techniques to increase information

Soil ecosystems are complex, elusive, and still largely Yield, the sensing systems we have deployed have collected
misunderstoodScience has called them the “final frontier” [10]. ~~ Measurements interesting for scientists. Previously peeed
This paper presents the first systematic design of a robostrae diurnal cycles in various soil chemlstry paramgters gcmral
system for soils. We discuss three deployments we have taeer deployments have led to further studies and investigatiburch

over the past year, from a rice paddy in Bangladesh to the SanWOrk remains, but this paper presents the beginning in weat w
Joaquin River basin in California. In these deployments, we hOPeisanew direction for sensor system deployments.

experienced first hand the unique challenges that arise iikingp The paper is organized as follows. Sections 2 and 3 discuss
with soil systems. Soil processes are difficult to observeabse ~ SOil €nvironments and our three case study deploymentsoSet
i) long-lived, dependable sensors do not exist for many oo describes how we calculate the information yield and prissen

modalities, and ii) below-ground soil characteristicscoserved) ~ numbers for each deployment. The remainder of the papeséscu
introduce significant latent spatial variability in sendata that can ~ ©On the evaluation of novel techniques we have employed isoilr

be difficult or impossible to adequately resolve. Thus, emilhg deployments to improve information yield. We discuss mazing
every data point and ensuring it is usable is important kethere sensor yield in Section 5, network yield in Section 6, and-tieae
is less data to be collected even in the best case. interactivity in Section 7.

In this paper we focus on techniques we have used to improve Related Work Several recent papers have described other
this quantity of scientifically usable data, which we caleth  experiences with sensor network deployments. Tolle et al.
information yield. We present experiences, lessons learned and describe a deployment measuring microclimate in a coastal
data from each deployment, and evaluate techniques wengebsig redwood in Sonoma County, California [4], focusing prinhari
to improve information yield in the context of each partaul on multidimensional data analysis. The authors observe tha
deployment. These techniques address: their sensors—temperature, humidity, and photosynihigtiactive

radiation (PAR)—required little calibration beyond thatrformed

e Maximizing sensor yield.We evaluate techniques toimprove by the manufacturers, and that real-time monitoring of ekw

thesensor yield, the percent of data received from the network quality could have helped to improve their network yield,ioth
that is usable for scientific purposes. was 49%.

For example,in-situ calibration techniques can be used in ~ Wemer-Allen et al. describe a seismic deployment on a
removed and calibrated, avoiding premature calibration to t© the redwood deployment's, although in the absence obicert

immediate calibration to increase the amount of usable data Network data is compared to data collected in more conveaitio
delivered from the system. ways, allowing them to evaluate data fidelity. The authoeduaite

event detection accuracy, finding that their sensing systetected
e Maximizing network yield. We evaluate techniques to 5% of the volcanic eruptions that took place. Low detection
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Figure 1: San Joaquin River Deployment: The three curves in the
top and bottom panel on the left correspond to observatiboses
two and three feet below the San Joaquin riverbed (right. thio
sensor “stacks” were positioned within feet of each other.
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Figure 2: Temperature at James Reserve, CA: Difference between
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Figure 3: Output of a Kriging model based on data collected from
one of our soil deployments in Palmdale, CA. The left paneirxsh
the monitored locations in the field, and the right two parseks
two possible views of the soil output from the model basedwmn t
different settings of a parameter controlling uncertathtgsholds.

of chemicals through “ideal” soils, measurements of realsso
to determine the parameters necessary for these modelal reve
unpredictable variation even across short distances. ré&igu
demonstrates how the resulting uncertainy in parametdcelan
change a scientist’'s view of the soil. This argument appiea
variety of other sensing modalities. Figure 2 shows hetamedy

of temperature measurements, this time from stacks spacedek
apart in a 3x 2 grid with temperature sensors at 2 cm and 8 cm
below the surface. The measurements are taken from this pata
typical day in October. The figure is a scatter plot of theatt#hces
between temperatures in neighboring locations: circlesespond

to differences between temperature sensors at the sante liept

1 meter apart in the grid, and crosses correspond to diffesen
between temperature sensors at the same location but tzphya

6 cm in depth. Temperature differences up to°Cican be seen

same depth, and ii) 6 cm apart, at 2 cm and 8 cm depths, at thepetween sensors separated by 6 cm.

same surface location.

accuracy is attributed to parameter settings. They alstuaea
data fidelity, finding that selected acoustic and seisminad&gare
consistent with ground truth and expected readings.

Both of these deployments utilize sensors that are fundtaiiyen
more reliable and require less maintenance than the seuseds
in soil deployments. The unique challenges that arise irkingr

In many environments, this kind of spatial variability cae b
addressed with some form of dense sampling. We might lijeral
deploy a large collection of fixed sensors, or instead, move a
small number around with a robotic system. A class of scedall
Networked Infomechanical Systems [2] has proved succkessfu
lakes and streams, for example. In soils, however, densplsam
is too invasive, disrupting the very systems we would like to
observe. The uncertainty associated with modeling heteregus

with soil systems have driven the design of our system and our physical processes using point measurements poses duatistri

deployment experiences in different directions.
Musaloiu-E et al. report on an end-to-end soil deployment
undertaken in Baltimore involving soil temperature and staie

signal processing challenge that is as interesting bué qglifterent
from the more common acoustic and seismic applicationsateat
perhaps more familiar to the sensor network community.

sensors. The authors describe a sensor calibration process To further complicate matters, many of the sensors used in

undertaken before deployment, but only briefly mention dmt#s
and do not focus on issues relating to information yieldtdad,
they focus their analysis on energy consumption, databesigr
and post-deployment analysis infrastructure.

2 Difficulty with Soil Deployments

Soils are fundamentally different from most environments,
impacting the design of a sensing system deployed in this
environment.

Soils exhibit spatial heterogeneity of physical and chenic
properties even at small scales. Thus, measurements teien f
proximal locations in soil are often not redundant, and caene
differ significantly in structure and amplitude. In Figure for
example, we present data from a series of nitrate sensaspph
panel contains two days of data, and the bottom panel cantaily
data for the first day. The three curves in each panel cornespo
to observations at one, two and three feet below the San ifpaqu
riverbed. While the two sensor “stacks” were positionecimifeet
of each other, we notice very different diurnal patternshia data.
The full deployment consisted of 6 such triples, with royghélf
exhibiting each pattern.

In part, this behavior is to be expected. While mathematical
models can be formulated to describe, for example, the gidfu

contaminant tracking are short-lived, prone to faults aeqguire
frequent calibration. For example, the sensors mentioned i
connection with the data in Figure 1 employ ion-selectieebdes
(ISEs), a class of so-called active sensing elements. $rcdse, an
electrical potential is generated when there is a diffezeincion
concentrations between an internal reference sample &ndoth
being tested. A chemically treated membrane acts as a fiter f
the specific ion being measured. These membranes, howeger, a
not field robust and are the major source of reliability peohs for
ISEs, resulting in short, error-rich deployments.

One standard approach to measurement reliability problems
involves deploying redundant (dense) systems. As mertione
above, however, this strategy is not feasible for soilssTinot
to say that techniques do not exist to increase a user’s emfd
in the data; for example, physical soil samples can be extlac
and analyzed in a lab to perform point checks of sensor rgagdin
but such techniques are also not fool proof. In additionseen
maintenance involves removing sensors from the grounds Thi
process is disruptive to data collection as soils requiravaere
from a day to several months to settle once disturbed, duvhrigh
time the data from the sensors are not always usable.

To summarize, soils present a challenging new frontier for
embedded sensing. The phenomena under study exhibit comple



spatial variability, and the sensors can be noisy and wainlelj
forcing relatively short-term deployments.

3 Soil Deployment Case Studies

In this section we describe three soil deployments studied
throughout this paper: the initial James Reserve deploynaerd
follow-on deployments in Bangladesh and the San JoaquierRiv
basin. Each deployment improved upon the previous eithebinst
design or functionality.

James Reserve The purpose of the transect at the James Reserve
is to explore the spatial and temporal scales at which stfiaczi

of a scheduled irrigation event, the diurnal trends (alsens&
hydraulic parameters) indicate that diurnal, possiblypiaduced,
processes may be important in the mobilization of arsenfe T
scientists are returning to the field in December 2006 tchéurt
study this phenomenon. We will join them in 2007 to deploy aemo
extensive and robust wireless sensing system.

While the wireless connectivity enabled real-time intéicac
with the network, allowing us to find and fix problems when they
occurred, other problems remained. A pylon in this deplayrhed
up to 24 sensors, so deploying a single pylon took all day, and
replacing a faulty sensor or moving a pylon was nearly imidess
once deployed.

measurements should be taken, and to study the relationship

between soil CQ fluxes and moisture and temperature conditions
in the soil. The network has collected over 7 million poinitsce
October 2005.

This transect spans approximately 80 meters. At each of 10
sites, 13 above and below ground measurements are takewe Abo
ground, air temperature, relative humidity, barometressure, and
photosynthetic active radiation (PAR) are measured. Bglmund,
temperature, moisture, and G@oncentration measurements are
taken at depths of 2 cm, 8 cm, and 16 cm in the soil
Sensors are connected to Campbell scientific dataloggeds, a
powered using deep cycle marine batteries that can lastaeve
months before requiring replacement. More recently, werarded
this deployment with temperature and moisture sensors that
communicate over a wireless Mica2 network in order to testce
placement and experimental methodology in soil envirortsien
One of the primary reasons that this deployment has beent@ble
collect data for over a year is that it does not include ISEs.

The dataloggers in this transect are not equipped with aseel
radios, and store data locally. Thus, problems can peiwidbhg
periods of time before they are fixed.

Bangladesh In January 2006, we deployed a wireless sensing
system in a rice paddy in Bangladesh (Figure 4) to help
scientists evaluate the relationship between irrigatiot arsenic
contamination in the groundwater [11]. Tens of millions ebple

in the Ganges Delta drink well water impacted by arsenic, ssina
environmental poisoning projected to cause approxima2e¢dd0
deaths per year [13]. The experiment was designed and d&ploy
with scientists and civil engineers from the Bangladeshvehsity

of Engineering and Technology and MIT. We deployed 42 ISEs to
monitor ammonium, calcium, carbonate, chloride, pH, otate
reduction potential, and nitrate, and 8 soil temperatureistare
and pressure sensors at 3 different depths in 3 locations. Th
network collected 26,000 measurements over a period of §2 da
This deployment was short-lived because it primarily clen
ISEs.

Influenced by the problems at the James Reserve, in Banglades
we employed a wireless network of sensors that provided real
time access to data and network parameters. In order to V@pro
the amount of usable data collected by this wireless netwark
incorporated a delay-tolerant networking (DTN) layer irdar
network stack for reliable data delivery. This DTN layer was
quickly put to use when after the first day in the field, the tasader
informed us that our basestation ran the risk of being stiblem
left it in the field over night. Without a networking layer éohnt
to basestation absences our network would not have captured
as most of the diurnal activity took place in the early hourthe
morning. In Section 6 we discuss how our DTN layer enabled a
91% network yield even though the basestation was abserg mor
than half the time.

The most surprising discovery from this deployment was the
diurnal variations observed in ammonium, chloride, andbcaate
(graphs in Figure 4). While data flattened around day 7 asudtres

San Joaquin The purpose of the deployment in the San Joaquin
River was to characterize the transport and mixing phenanan
the confluence of two distinctly different rivers: the MedldRiver
(relatively low salinity) and the agricultural drainagepacted
San Joaquin River (relatively high salinity). Soil measneats
were supplemented with measurements in the river taken by an
autonomous robotic node [2]. Six sets of 3 nitrate ISES coteue
to Hobo dataloggers (Onset computers) were deployed atamte f
increments below ground, alongside soil temperature aliwitga
sensors, in the first week of August, 2006. 48,000 measurtsmen
were collected from the nitrate sensors over this 5 day gemot.
The key to this short-term deployment’s success wasjdtdin
(Figure 1), a sampling platform designed to ease the type of
deployment effort we experienced in Bangladesh. Javefiabled
each set of sensors to be easily deployed at multiple deatits,
redeployed in multiple locations over the short deploymdittis
spatial coverage enabled by the javelins was especialljuluse
in that region because several kilometers of homogeneoils so
was separated with random patches of heterogeneity. 8eétio
discusses the javelin further.

Interestingly, the most surprising discovery in this dgptent
was again diurnal trends, though this time in nitrate datapigs
in Figure 1). The scientists are unsure about what could bsing
these trends when a second array of sensors just a few meftgys a
showed no such fluctuations. Others have noticed similae et
in river nitrate and suggested that this may have been camsed
photosynthetic activity [3]. However, the diurnal behaviwre is
in the sediments beneath the river and the peaks are syrnodton
suggesting that a sudden fluctuation in river water conagans is
not the cause.

4 Calculating Information Yield

Given these experiences, we will spend the remainder ofdpermp
discussing techniques we employed to improve the infoonati
yield in each of these deployments. In this section we desdrow
we calculateinformation yield, which is the percent of received
data which are usable for scientific purposes. Informatieidyis
made up of thenetwork yield, the percent of expected readings
received, and theensor yield, the percent of received readings that
are usable.

Data are classified assable if they fall within the operational
range of a sensor, or the concentration range where thersisnso
most capable of distinguishing between concentratioris.viorth
mentioning that while data in this range are usable for aigly
they are not equivalent to verified, quality measuremerits br
other faults could still impact the readings. The operatioange
is defined througttalibration, the process of mapping a sensor's
measured output to an estimate of the property being sefbed.
calibration for many sensors does not change over time yetheése
cases we can use the manufacturing supplied calibraticatieguto
obtain this operational range.

For example, C@concentration is reported in parts-per-million
(ppm) and obtained using6255 — 2500 /CPT, where S is the
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Figure 4: Bangladesh Deployment Image of soil pylons deployed in February of 2006 in a ricedfiel Bangladesh. Diurnal variations in
ammonium, calcium, and carbonate at a depth of 2 feet (leftlig), and in ammonium 1, 3, and 5 feet (right graphs) arerappRigure by
Jason Fischer, UC Merced. Left photograph is of a soil pydord, right photograph is of the sensor deployment process.
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Figure 5: ldealized calibration curve. Linear and Non-linear
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sensor outputC is a constant,P is pressure andl is the
temperature. It is impossible for G@oncentration to be negative,
soin order to find the lower bound for the sensor’s operatiarae
we set the equation to 0 and solve the equationSoBcientists
discard all data that occur below this threshold. A simileogess
was used for most of the sensors in our deployments.

The process for identifying the operational range for ISEs w
different. This process is based on the physical limitatjoor
sensitivity, of the sensor, instead of the physical linitas of the

phenomenon being measured. In addition, we could not use thegagerve had the highest information yield at 87%

factory calibration for ISEs because their calibrationraes over
time and must be updated.

be validated [12].

ISEs are currently the primary method of obtaining timaeser
concentrations of contaminants in water and soil envirartme
Nevertheless, they are fragile and require extensive d@ren
the tedium associated with these sensors, the questi@savithy
use such unreliable sensors? Some of the issues inherdras® t
sensors will be overcome over time, but the sensors arekaby lio
significantly improve in the next five to ten years. Moreovhere
will always be new and less reliable sensors that requirefalar
monitoring. Many of the techniques suggested in this paper c
be applied to a general class of sensors. Finally, as the ewmb
of sensors in standard deployments increase, the manuad lab
required to make highly reliable deployments could becohee t
limiting factor in deployment size. Systems solutions testh
problems that can scale with the size of the deployment mawal
deployments to scale up without sacrificing data quality.

Yields Using the operational ranges defined for each sensor, we
calculated the overall information, network and sensoldgidor
each deployment (shown in Figure 6). The deployment at James
companed t
52% at San Joaquin, and 59% at Bangladesh (first set of bars
in the figure). The network yields (second set of bars) wefe al

As with most sensors, ISEs are calibrated by exposing the q|qqe to 100%, so the information yield is primarily dicthtey

sensor to a range of standard concentrations to identiffutieion
that relates the electrical potential output of the sensothe
observed phenomena. For ISEs, the sensor output is plajéeasa
the logarithm of the concentrations used in the calibratibme
resulting calibration curve takes the form of a stretched ®u
(Figure 5). This curve contains lanear detection range, which

a deployment’s sensor yield. The sensor yield (3rd set af)hvaas
primarily dictated by the ISE yields. This is easy to see iflaak
at the sensor yield separately for different sets of senswssture
and temperature sensors (4th set of bars in the figure) haeld yi
of almost 100%, while the ISEs (last set of bars in the figueg) h
yields closer to 55%. Thus, it is not surprising that the degplent

covers the range of concentrations where the sensor respond 5; 33mes Reserve, which did not use ISEs, has a much higtsersen

linearly. The calibration equation used to translate seonsput
voltages to concentrations is defined by the slope and epéiaf
the line in the linear-detection range. The linear detectange
is bounded above and below byren-linear detection ranges
(NLDR), characterized by the range of concentrations whieee
sensor responds non-linearly to changing concentrationths
slope decreases. Error associated with readings incredise slope
decreases [12], thus readings in the NLDR have lower assdcia
confidence. The sensor is not sensitive to concentrationseab

yield, and as a result a much higher information yield, ttendather
deployments.

Best Practices We highlight several best practices. First, sensor
bias varies with hardware, and each data acquisition boasd h
its own bias factor. Thus, sensors should be calibrated thigh
entire data acquisition system (e.g. the mote and sensod )aibat
will be deployed in the field, not just the sensor. Second,sISE
must be calibrated before, after, and even during a deplogme

and below the NLDR, and so the slope for the calibration curve depending on the duration, because their calibration petens

approaches zero in these regions.

change over time. Third, we designed an end-to-end chedkglur

Scientists define usable data from an ISE as data that occurthe deployment to ensure that nothing had significantly gadn

inside the linear-detection range, and data in the NLDR ¢tlaat

during the rough deployment process. After digging the hole
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Figure 6: Average Yields Average information, network, and
sensor yield for all three deployments. Sensor yields foistnoe
and temperature sensors are also presented separatelyiSEom
yields. Moisture and temperature sensors (shown sepgraizie

the scientists we were working with in Bangladesh extrasesgral
physical soil samples for lab analysis. We used the resulis this
analysis in conjunction with a computer model of the soilmfstry
for that region to confirm that the levels for nitrate and cide
were expected to be in the NLDR of the sensor. As a result of
this lab analysis, the scientists were able to use this ddtas.
conclusion is validated by the data we collected. Of the 3@
points recorded in the NLDR of a sensor, 2850 of these points
are from either nitrate or chloride sensors; i.e. most of dhta
in the NLDR are from sensors measuring concentrations tleat w
expect to fall in this range. In addition, most of the poirgsarded
from a nitrate or chloride sensor in the NLDR (2000 of the 2850
points) were corroborated by at least one other sensor ofaime
type also reporting data in the NLDR. This is further validat

much higher sensor yields than ISEs. San Joaquin River had nothat the sensors were not faulty and in fact representafiteeo

moisture/temperature sensors, and James Reserve hadsio ISE

Nitrate from Bangladesh Pylons 2 (1 ft) and 3 (1,3 ft)

le-1

5e-7

Concentration [M]
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Dates (2006)
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Figure 7: Nitrate data taken from three different locations in
Bangladesh. Vertical lines cover the linear detection earand
horizontal lines delineate the extent of the NLDR. Most & tlata
occur within the NLDR. Nitrate data from remaining three sms
not shown because a majority of them were not usable.

environment.
5.2 Sensor and Hardware Faults

Large Time Gradients Large timegradientsin the data, or large
changes in sensor output with respect to time, are usually no
representative of the environment because: i) physicai@hena
are limited by natural laws, so we can place an expectatidmean
rapidly they are able to change, and ii) the sensor is nothtapa
of measuring large magnitudes of change over a short timecer
Thus, time gradients usually indicate a problem in the senso
hardware.

We have observed large gradients in data from all of our
deployments. In most cases, a gradient only spans severdb po
and the data is simply discarded. In data collected in Balegla,
large gradients persisted for up to several days in somarioss,
and often indicated a problem. In one instance, we found an
exposed sensor connector from one of the sensors repoitihg h

stick the sensor in the water that pools at the bottom and take time gradient data sitting in a muddy pool in the field. Moving
a measurement, and then take another measurement imnhediate the cable and connector to a dry enclosure addressed thieiprob

after the sensor is buried. We expect all sensors of the sgredad
report the same concentration because they are all megghen
surface water that has pooled in the hole at that point. We als
expect the measurements taken before and immediatelythéier
sensor is buried to remain relatively constant.

5 Improving Sensor Yield

The first dimension to improving information yield is to masize
sensor yield. Broadly speaking, there are three classe®bfgms
we observed to reduce sensor yield. In the first instance,ataturs

in a sensor’s non-linear detection range (NLDR) and may oy ma
not be usable, requiring further validation. In the secamtance,
sensors produce readings that do not reflect reality (e.gir@a w
breaks). In this case, the faulty hardware should be fixethdthird
instance, a sensor slowly transitions from producing usalaita
to producing readings that are difficult to interpret (i.alileration
drift). In this case, the sensor should be calibrated. Irfdhewing
three subsections we discuss these three classes of psotitam
occurred in the field, and the actions we took in the field thegit
fix or validate them.

5.1 Validating Questionable Data

Data that occur in a sensor’s NLDR are typically discardsdhay
can indicate a problem with the sensor. However, it is alssibte
that the sensor is not faulty and that the ion concentrasanuiy
outside of the sensor’s linear detection range. Much of #dta de
collected from chloride and nitrate sensors in Bangladeshiroed

in the NLDR of the sensor and fell into this second category.
Figure 7 is a graph of data from three nitrate sensors; thécaer
lines indicate the linear detection range, and the horadites
delineate the NLDR. In order to determine if the data werédlesa

However, a wet connector was not the cause of all of our higk ti
gradient data. The top panel in Figure 8 is a graph of data rlom
ammonium sensor with high gradient data for 2 days starting o
February 2.

In order to better understand this phenomenon, after rieirn
from Bangladesh we redeployed part of the system we hadykplo
there, including the sensor in Figure 8. In one of these gepdmts,

a little after hour 2 (bottom panel in Figure 8) we noticecytar
gradients in the data from the ammonium sensor. We disctehec
the sensor from the sensor board (captured in the data seeam
the sharp peak immediately after the dip in readings arouna h
2.5) and connected it to a pH meter, an independent meter used
in the field to measure the sensor output. The meter verified th
large gradients reported by the mote, and led us to disciwr t
the output was caused by an electrical short in the inteerasdar
wiring. By contorting the sensor cable we were able to termilyr

fix the short. The problem recurred several times during diaig
long deployment (a little after hour 3, just before hour 6¢ @st
before hour 7 in the graph), and each time was temporarily fixe
by adjusting the sensor cable. Several of the sensors thaiteel
data with high gradients have been sent back to the manufagtu
company for investigation.

Stuck-At Value The stuck-at fault represents a sensor getting
stuck at a particular value. Often this is a value at the higlow

end of the sensor’s operational range. These faults arecdaung
because the measurement can tell you nothing about thelyinder
phenomenon. Yet, when they are in-range, simple out-ajgan
detection does not help [1]. In our James Reserve tranddeqst
some of the stuck-at faults were easy to identify, as theegalu
occurred outside of the sensor’'s operational range. Fampha

a soil temperature sensor connected to node 7 reported ®7,00
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Figure 8: Top panel is a plot of data collected from an ammonium
sensor in Bangladesh. Faults in the form of excessive timdignts
beginning around Feb. 2 for two days are easily identifiedally.
Bottom panel is a plot of ammonium data that captures a simila
time gradient fault observed during a deployment in our pawk
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Figure 9: All data from this calcium sensor are outside of the
NLDR, indicated by the horizontal line, and thus not usable.
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continuous measurements of eithe®1.9 or —89.4°C from April
to August, 2006. This sensor should have been replaced.

Broken Sensor Deployments are a chaotic and rough process,
and sensors are not always as field-robust as we would like.
One example is a calcium ISE deployed in Bangladesh which
had reported several consecutive days of data well outdidks o
operational range (Figure 9). In order to identify the caokthe

problem, we connected the sensor to a pH meter. The readings

from the pH meter corroborated the data returned by the mote,
isolating the problem to the sensor. Ideally we could hapéaed

this calcium sensor with another one. However, given ouomyl
design, it was too difficult to replace just one sensor (or the
whole pylon for that matter); moreover, deploying and reogpg
sensors was so labor intensive and destructive that instead
decided to leave the sensor in place and hope that it improved
(which it never did). Further evidence that the sensor shbalve
been replaced came during the post-deployment calibrafitinis
calcium sensor, where the sensor displayed little to notimeato
changing concentrations; i.e. the slope of the calibratimwe was
essentially 0, evidence of a faulty sensor. While some sestiiaited

the check we did immediately after placing them in the grofend.

two chloride sensors that were wired in reverse), this aal@densor
was not in this group. We believe that the membrane for thisa@e
was damaged during or immediately after the somewhat rough
deployment process. This sensor is currently being inyat&d by

the manufacturing company to isolate the problem.

We should have replaced this sensor after receiving a 0%sens
yield for several days. This conclusion is supported by @ia s
well. 11 of the 42 ISEs reported a sensor yield of less than,25%
and all of these sensors reported data outside of their tipeah
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Figure 10: Data from an oxidation-reduction potential (redox)
sensor is 0 millivolts until the morning of Jan 30, when the
connector breaks, and the board reports noise sampled frem t
disconnected port.

range for at least 2.5 consecutive days. Thus, replacingisose
that was not working for 2.5 days would have targeted serbats
ultimately did not collect very much usable data.

Disconnected Sensor Often sensor connections are not secure,
and sensors can become intermittently or persistentlydisected.
This disconnection manifests differently on different alat
acquisition hardware. In Bangladesh we used MDA300 sensor
boards, which report all data from a port, regardless of thwus
of sensor connection. In one instance, we noticed that deta f
an oxidation-reduction potential sensor was suddenlyeemety
noisy (Figure 10). Upon checking the sensor with our pH meter
we discovered that the sensor's BNC connector was broken.
Unfortunately, both fixing the connector and replacing teeser
were too difficult given our platform design, so we left thesar
in place.

In the James Reserve deployment, sensors are connected to
Campbell dataloggers. In most instances, the datalogdiereport
a null value if the sensor is disconnected, making it easyetea
such problems. 211,545 data points, or most of the 362,00/ fa
data points collected at James Reserve, were caused by such a
disconnected sensor. In the case of gG€nsor, if the sensor is not
properly powered, the datalogger reports a default valu@@g5,
which occurred 93,000 times in this deployment, accountforg
25% of the faulty data collected in this deployment.

In most cases, if a sensor appears disconnected for over thday
data, power, and ground wire connections should all be @teck

Low Battery The hardware component that translates analog
sensor signals to digital values (the ADC) requires a mimmu
battery voltage of 2.7 V for correct operation. Battery agks
below this level have been observed to impact data quality][4
On Mica2 based systems, this requires monitoring the lyateel
directly, since the CC1000 radio can continue to transné daen
when the battery voltage is at 2.2 V. Thus, the Mica2 may ooeti
to transmit data, but it may not be usable.

We encountered this problem in Bangladesh, where 40 minutes
after being deployed, the battery for mote 11 plummeted 8dV
to 2.4 V over a period of 20 minutes. Unfortunately, replacihe
battery did not improve the rate of faulty data recorded fithis
mote. With an overall sensor yield of only 35%, this mote rég
352 faulty data points a day (as compared to the median vdlue o
205 faulty data points per day from all motes), the highets od
all motes in that deployment. In addition, almost half of ddita
with high time gradients was collected from this mote. Weedwel
that an electrical problem on the board caused the sudd@nidra
battery voltage in addition to the low sensor yield.

Lightning Dataloggers are vulnerable to lightning strikes when
they are connected to sensors buried in the soil, which ss\e
direct path to ground, enabling current flow. Electrical lpemns
such as this one usually manifest as faulty readings froseakors
connected to that datalogger. For example, all sensorsectenhto



node 7 in our James Reserve deployment reported readingjdeut
of their operational range for an hour starting on Augus20D6 at
1:30AM. If the datalogger does not recover, it should beaegd.

Elusive Problems There were several problems that we could not
track down. For example, all PAR sensors connected to evag n
reported a faulty reading 0f88888 from July 22—26, and again
on August 10, 2006. We do not know what caused this behavior.
Not all unusable data collected from our deployments can be
explained by the criteria above. We suspect that some of this
unusable data can be explained by drift in the sensor ctbinra
In the next section, we describe how calibration issues atgoh
the sensor yield in our deployments, and describe two tgcdiesi
being developed to address this problem.

5.3 Calibration Drift

In this subsection we discuss the third class of problems tha
impact sensor yield, instances where sensors slowly trangiom
producing usable data to producing readings that do not $eem
reflect reality as a result of calibration drift.

Calibration parameters (i.e. the slope and intercept) fostm
sensordirift, or change over time. Many soil sensors, such as the
ISEs, are especially prone to drift [12] and are thus caldata
before, after, and often during a deployment. In a partityla
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Figure 11: Drift of CO, Sensor in James Reserve Plots of three CQ
sensors buried at 2, 8, and 16 cm. Horizontal line at O indictie
lower threshold for usable data from these sensors. Topl igne
representative of the 8 other monitoring locations. Botiaanel
contains data from one outlier sensor that gradually dipsbthis
line beginning in December.

the soil structure and moisture content. This argues fdopaing
calibration asinfrequently as possible, especially for short-lived
deployments (similar to that in the San Joaquin River) wiahbe
severely impacted by several days of sensor down-time. ¥deisis

bad example, sensors connected to mote 11 in our Bangladeshwo techniques to either calibrate a sensor or determinenvehe

deployment averaged a change in the calibration offset 0fmi@
when comparing calibration equations obtained before &rdthe
deployment. Given the average operational range for a sefso
300 mV, an offset change of 100 mV is a significant change.
Driftimpacts a sensor’s perceived operational range, lansithe
amount of data usable for scientific purposes. The top arntdrnot
panels in Figure 11 are each plots of three,G8nsors buried at
2, 8, and 16 cm. The Csensor’s operational range is defined as
concentrations above 0 ppm (indicated by the horizonteldimthe
graph). The top panel is representative of readings taken & of
the 10 locations where Csensors were deployed, which remain
above this threshold. The bottom panel contains data ¢etldoom

sensor must be calibrated, while the sensor is in-situ irotd
minimize unnecessary soil impact.

The first technique is to use a known relationship between a
sensor in the soil and a phenomenon that is easier to medhee.
challenge in using this technique is to define a model betwrezse
two. For example, at James Reserve, because the amount,of CO
in the air (which is easy to measure) is tightly correlatethvtie
amount of CQ that is in the soil, these two measurements can be
compared. Using a recently factory-calibrated sensor tasome
CO, concentration in the air, scientists have found that soitees
that differ by more than 10% from this reading are candidates
for calibration. This threshold is based on over a year ofdfiel

one node in the deployment where the sensors at 2 and 8 cmexperience with the James Reserve transect.

were good, but the readings from the sensor at 16 cm slowly dip
below this line between December 2005 and March of the fatigw
year. This steady trend is not characteristic of a faultysegrand
likely indicates that the calibration for the sensor wasdgedly
drifting. Recall from the previous section that the millivoutput
from the CQ sensor is converted to concentration (ppm) using
a calibration equation. If the parameters of this equatibange
over time, the translation from millivolts to concentratiwill be
incorrect. In this instance, resulting in negative congiuns.
Without further measurements taken during the time of diifis
nearly impossible to identify the change in calibrationgraeters.
Instead, the scientists discarded these 9,000 pointctedleuring
this three month period from the G@ensor.

Accurately capturing drift is necessary to correctly idfgnt
usable data. But this is not a simple problem because there ar
competing interests influencing the decision of how besafiuwre
drift. One approach to capture sensor drift is to re-caléora
sensor occasionally, and model the drift between calitmagizents.

In-Situ Calibration  We could not apply this above technique to
the ISEs in Bangladesh and the San Joaquin River valley becau
there is no known relationship between ions in muddy water an
some more easily measured phenomenon. To address such cases
we are experimenting witin-situ calibration in order to capture
changing calibration parameters while the sensor is bunetie
soil, and avoid premature calibration. A Teflon tube is dtéat
to a sensor, with one opening of the tube positioned just ebov
the sensor membrane and the other end exposed above ground.
Periodically, the sensor is spiked through this tube withessd
milliliters of a standard solution. The solution concetita is
chosen to be higher than that of the environment so that a puls
can be seen in the sensor data as the solution is deliveredhemd
absorbed into the environment. Significant changes in th@iude
or slope of this resulting pulse across spikes could be usexha
indication that the sensor is drifting and should be rebcated.
Preliminary results are encouraging. Figure 12 contaisglig

In a one week lab experiment we calibrated a set of sensorsfrom one experiment we performed on newly installed nitrate

daily and found that calibration does not change linearlghwi
time, nor does it change in a constant direction. This erpemt
argues for calibrating sensors fasquently as possible in order to
capture calibration parameters. However, calibratiaglfiis labor-
intensive. This problem is exacerbated for soil deploymevtiere
sensors are buried underground and inaccessible. Every dim

sensors at James Reserve. The solid arrow corresponds td.a 5 m
nitrate injection, and the dashed arrow corresponds to a 5 mL
water injection used to flush the nitrate solution. The shippin
voltage indicates the nitrate spikes (voltage is inverselgted to
concentration for nitrate ISEs), and the curve decays anittae
slowly absorbs into the soil. The graph shows that the slopk a

sensor needs to be taken out of the ground, calibrated, and pu response time for spikes administered to the sensor oveotirse

back in, the soil needs time to settle back into a compactee.st
This period can extend from a day to several months, depgraiin

of a day are relatively consistent. This idea is still refaly new.
Next steps to validate this approach include administesiiges
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Figure 12: In-Situ Calibration of Nitrate Sensor at James Reserve
Data from nitrate (solid line) and moisture (dashed ling)sses
when spiked with 5 mL of nitrate solution (solid arrow) and 5
mL of water (dashed arrow). Nitrate concentration variggiisely
with voltage, so nitrate data pulses down upon injectionitate
solution.

regularly over the course of a week and then pulling the senso
out to re-calibrate when the response changes, and quagtifye
impact that the small injections of solution do not signifidwaalter

the environment.

Lessons Learned We learned two main lessons.

First, through the actions we took and their results we fahad
in-field actions enabled us to improve the amount of usabta da
we collected from our sensors. We were able to isolate pnable
by validating data that would have been otherwise discalged
extracting and analyzing physical soil samples as in the oathe
nitrate and chloride sensors, measuring sensors in theafidtdthe
case of the broken calcium sensor, and calibrating sensesiu.
Even when we were not able to fix problems in the field, such as
replacing a sensor we knew to be broken, in-field actionsledab
us to isolate problems and take validating measurementsaha
could only have suspected at after the deployment. In Settive
quantify the impacts of immediate actions on sensor yield.

Second, through the actions we wemet able to take, we
discovered the importance of designing a robust platforime T
platform should facilitate sensor replacement when ssnsoe
faulty, and in-situ calibration. It should also be easy t@ldg
and re-deploy, especially important for short-term depients. In
Section 7 we describe thjavelin, a platform designed to address
these issues and successfully deployed in the San Joaquén Ri
deployment.

6 Improving Network Yield

The second dimension to improving the information yield is
to maximize thenetwork yield. In this section, we discuss the
techniqgues employed in each soil deployment in order toimbta
high network yields ranging from 91%-100%. Our wireless
network also achieved a network yield of 91%. This is higlhent
previous wireless deployments which averaged around 50%.[4

continually attended, data was downloaded every day overemlw
channel, there were fewer nodes and sensors, and the degibym
was much shorter than the James Reserve deployment.

We expected our wireless sensing system in Bangladesh to
achieve the lowest network yield of all of the deployments
because it relied on an unreliable wireless channel instézal
wired medium for data communication. However, this deplegm
achieved an average network yield of 91% per node. Most
surprising is that the network achieved this high yield with
using an end-to-end reliability layer. The reliability wattained
in two ways. First, we used Sympathy [6], a system designed to
systematize data management by monitoring data flow frorh eac
node, and identifying actions a user can take in the field when
the network yield falls below a user specified threshold.oBd¢
we incorporated a delay-tolerant networking [8] (DTN) laym
the mote and basestation [9]. This layer sits directly ondbfhe
distance-vector routing layer. If a node does not have a valite
to the basestation the node stores all packets to the lodRRE#
until a route becomes available.

We analyzed our data in order to understand the 9% packet loss
Since packet storage and transmission is persistent anams
reboots, we believe the loss was not caused by nodes refootin
Instead, we suspect a bug in the DTN layer. It took approxetgat
20 minutes for a route to time out on nodes once the basestatio
disappeared. Until then, nodes operate under the assuntptiba
route still exists, and continue to attempt packet transimisto the
basestation. After exceeding MAC-layer retransmissi@agkets
not acknowledged by the basestation are dropped at the fapal h
instead of being stored in local storage. This bug has sieem b
fixed.

Time stamps While the DTN layer was extremely effective at
improving network yield, an unfortunate result of nodesristp
packets locally was that packets were received out-ofraatiéhe
basestation. Since we could not rely on time of receptiorhat t
basestation to order packets, nodes needed to be able tattgu
time stamp data packets. No node in our network, including ou
basestation, had access to the Internet or GPS. Networksnode
obtained the time from the basestation which flooded the time
every 20 minutes. The clock on the basestation needed to be
manually set every morning when it was booted up. Problertis wi
this centralized protocol occurred when a node re/bootettlam
basestation was not available to initialize the clock. Tha®rder

the data we used mote time stamps by default, but when the time
stamp was incorrect, we used a combination of sequence mambe
to order the data with linear regression based on manuatigerh
time stamps.

Lessons Learned For wireless networks, a DTN layer that
enables nodes to store packets when a valid route to thethtises
is not available can be extremely effective at protectingirasf

Nodes in the transect at James Reserve achieved an al\,erag@nexpected basestation outages in addition to unreliableless

network yield of 91% from each of the 10 wired dataloggers.

links.
In order to address the issues introduced by out-of-ord&x da

77% of the 960,000 missing measurements occurred as a result
of the battery running out (determined because measursment and networks subject to disruptions and loss of connegtivith

are missing from every sensor). The remaining 23% occur as @ basestation, we need a new time-synchronization protd6d

a result of a disconnected sensor (dataloggers do not reportProtocol should be fast converging, to initialize nodesickis soon
measurements from disconnected sensors). Both of theblepre ~ after start-up, and because delay-tolerant networkinglesaodes
are Simp|e to detect and fix’ but they were not |mmed|ate|y to store data in the absence of a basestation, this pl’OtbOﬂldS
addressed because the nodes were not equipped with wireles§e distributed so that nodes can obtain the correct time, ievene

connectivity. A tradeoff exists: Wireless communicatiamables
realtime interaction but traditionally introduces lowetwork yield
and increased complexity.

absence of a basestation.

7 Interactivity

Nodes in the San Joaquin deployment achieved a 100% networkIn Sections 5 and 6 we discussed the sensor and networkefilur

yield. While significantly higher than the James Reservédyia
100% yield is not completely unexpected as the dataloggers w

we have observed. Left unchecked, such problems can catese se
data loss. ldentifying the presence of a problem and fixinasit



quickly as possible can significantly improve informatioielg.
The wireless connectivity in our Bangladesh deploymenvigex
us the opportunity to interact with the hardware while théada
was gathered. We begin this section by discussing and dyiagti
the impact of real-time interaction on the information gi¢fom
sensors deployed in Bangladesh, and present severaleatatée
examples from other deployments where interactivity cdwdsle
greatly improved information yield. Based on these expess,
we discuss thg¢avelin, a platform for soil monitoring that enables
real-time interactivity.

In some instances, in-field interaction improved the seyisba.
For example, data that falls in a sensor’s NLDR should belaédid.
By extracting physical soil samples in Bangladesh and airady
chloride and nitrate levels, we were able to use 2850 of 3408 d
points that occurred in the non-linear detection range ofes.
This action improved our sensor yield by 10% overall, and B35
for those sensors. However, there were 550 data pointsdedor
from sensors other than chloride and nitrate of the 3400 poiats
in the NLDR that we had to discard. Systematic interactietyld
have enabled us to extract physical samples for these seasor
well.

In several instances, while in-field interactivity did nad as in
improving the sensor yield, we were at least able to deflifiv

used in Bangladesh which became extremely difficult to meereu
when holding its maximum of 24 sensors. The end of the tube end
in a point. In contrast to the up to 5 holes required to deplay t
pylon in Bangladesh, the javelin can be driven into the gdona
single hole, minimizing environmental impact and makingéasier

to replace bad sensors.

The javelin is also designed to support Teflon tubes attathed
each sensor for in-situ calibration. This tube can also ezl ue
extract water near the tip of the sensor, or physical sampseful
in validating questionable data.

Not all soil systems can utilize the same platform. The javel
does not perform well in environments that are not moisture
saturated as the sensors are shielded by the column and comet
into contact with sufficient moisture. However, in wet sdike in
Bangladesh or the San Joaquin River, the javelin performt we
Figure 1 is a graph of diurnal nitrate trends detected by fteit
sensors deployed at 1 foot intervals inside of a javelin.

Lessons Learned In-field interactivity is key to improving both
network and sensor yield, and is enabled in two ways. Fittea
should be equipped with wireless communication to enakdé re
time data analysis. Real-time communication is requiredatify
users immediately when problems arise; wireless commtiaica
could have notified users in the James Reserve deployment

isolate the problem. Broken sensors accounted for 58% of the immediately when a node went down, instead of having to wait

faulty data points collected in Bangladesh; while we coutd n
replace them, similar to the calcium sensor described iti@Be5,
we were able to validate that they were broken during the

for several months to discover it during regular mainteeanc
Second, it is impossible to manually monitor data from atiszes
in a deployment. Like Sympathy does for network quality, we

deployment by checking the sensor with a pH meter during the need a tool to systematize the monitoring and managemeheof t

deployment. Disconnected sensors accounted for 2% of/fdatt

data quality. The basestation should be equipped with soéwo

in Bangladesh, and 58% of faulty data in our transect at James systematically monitor data and notify users of actions tben

Reserve; in Bangladesh by checking the connector in theiield
were able to validate the problem. High gradient data adeoun
for 60% of faulty data collected in Bangladesh; while we dat n
isolate all of the problems, we were able to fix one of the imsta
by moving a connector to a dry area, and isolate anothernosta
by checking the sensor with a pH meter.

In several instances, all in the James Reserve transectdwetd
interact with the sensors because the nodes did not havéessgre
connectivity. Thus, even faults that were easy to identifyl a
fix were not addressed. Stuck-at faults at one temperatmsose
during a 5 month period accounted for 7% of faulty data; and a
failed battery resulted in 3 months of lost data from one node
resulting in a network yield of 69% from that datalogger.

7.1 Javelin

take in the field to fix faults, validate questionable dataaddress
mis-calibrated sensors. The node should be equipped withae
to enable immediate feedback, so that once an action is,takeser
can request subsequent samples to ensure that the prolddradra
fixed, instead of having to wait for the next sampling perMya. are
working to develop such a system based on the data we callgcte
Bangladesh.

8 Conclusions and Future Work

Soils are challenging environments for sensing systemstdue
their short duration, the measurement uncertainty, andgehsing
uncertainty. We discuss the techniques we employed to wepro
information yield in three deployments undertaken in Badgkh
and in California. Through these deployments we have |earne
three lessons.

As we have learned through our deployments and discussed, a First, in-field interactivity significantly improves semsand

platform for soil monitoring must enable interactivity Withe
deployment in several ways. First, because many soil mamgo
sensors require frequent calibration and are unrelialgsting
and replacing individual sensors should be easy. In additio
the platform should support in-situ calibration. Second¢ause
dense sampling is often next to impossible in heterogensoilis
environments, the platform should be quick to (re)deplayl a
minimize the impact on the soil to keep soil settling timesaat
minimum. Third, the platform should facilitate the extiaat of
physical samples near sensors as soil sensors are oftéy dadl
data from these sensors require validation.

Thejavelin pylon depicted in the top of Figure 1 and deployed at
the San Joaquin River was designed to address these issnssr$

network yield. Actions such as in-situ calibration, vatidg
potentially faulty data, and fixing broken hardware can iover
the quantity and quality of usable data collected from a pndtw
Such interactivity is enabled in two ways: 1) Nodes shouldeha
wireless connectivity to enable real-time communicatiangd 2)
software should be installed on the motes and the basestatio
enable systematic and timely monitoring of the data qualiy are
working to design such a system to monitor data quality, dad p
to deploy it with our soil monitoring system in various loicats in
Palmdale, and in Bangladesh in December, 2008.

Second, network yield for wireless networks is significantl
improved using delay-tolerant networking techniques,rbquires
a robust time-synchronization protocol to handle the tesybut-

are housed inside of a 1.25 inch PVC tube. Slits are cut around of-order packet delivery.

the circumference of the tube to allow moisture in, but keap o
soils and other particles that may damage the sensor meashran
Communication hardware resides in a PVC enclosure attaithed
the top of the tube. A javelin is not designed to handle moaa th
sensors, addressing a mistake we made in the design of threpegl

Third, based on our experience, we have designeqaiatin,
a platform for very wet soils or shallow groundwater that
enables sensor interactivity by minimizing soil disturbamuring
deployment, and facilitating the deployment, replacenzet in-
situ calibration of sensors.



Finally we wish to acknowledge our collaborators. Deploptse
such as these are not possible without collaboration wittnpeing
institutions in the host country. Our deployment in Bangktuwas
made possible through collaborations with engineeringdesits in
Bangladesh and scientists in the US who had been travekiagy
to Bangladesh over the past 5 years.
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