- Main
Catalyst Deactivation of a Monoligated CyJohnPhos-bound Nickel(0) Complex.
Published Web Location
https://doi.org/10.1021/acs.organomet.3c00450Abstract
Cross-coupling catalysts are prone to unproductive side reactivity that can limit their practical use in synthetic chemistry. A detailed understanding of these pathways and the conditions that enable them is important for reaction optimization and rational catalyst design. In this work, we report the off-cycle reactivity of a monoligated, CyJohnPhos-bound Ni0 complex following product-forming reductive elimination. In the absence of substrate, free phosphine ligand, or π-accepting additives, dimerization of (CyJohnPhos)Ni0 occurs, followed by C-P bond activation of the ligand to form a phosphido-bridged Ni0/NiII dimer; both the Ni0/Ni0 and Ni0/NiII dimers were structurally characterized. Monomeric (CyJohnPhos)Ni0 must be intercepted by substrate or free ligand to prevent irreversible dimerization and catalyst deactivation.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-