Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Shielded piezoresistive cantilever probes for nanoscale topography and electrical imaging

Abstract

This paper presents the design and fabrication of piezoresistive cantilever probes for microwave impedance microscopy (MIM) to enable simultaneous topographic and electrical imaging. Plasma enhanced chemical vapor deposited Si3N4 cantilevers with a shielded center conductor line and nanoscale conductive tip apex are batch fabricated on silicon-on-insulator wafers. Doped silicon piezoresistors are integrated at the root of the cantilevers to sense their deformation. The piezoresistive sensitivity is 2 nm for a bandwidth of 10 kHz, enabling topographical imaging with reasonable speed. The aluminum center conductor has a low resistance (less than 5) and small capacitance (∼1.7 pF) to ground; these parameters are critical for high sensitivity MIM imaging. High quality piezoresistive topography and MIM images are simultaneously obtained with the fabricated probes at ambient and cryogenic temperatures. These new piezoresistive probes remarkably broaden the horizon of MIM for scientific applications by operating with an integrated feedback mechanism at low temperature and for photosensitive samples. © 2014 IOP Publishing Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View