Skip to main content
eScholarship
Open Access Publications from the University of California

Analysis of the Pressure-Pulse Propagation in Rock: a New Approach to Simultaneously Determine Permeability, Porosity, and Adsorption Capacity

Abstract

Permeability estimation from pressure-pulse decay method is complicated by two facts: (1) the decay curve often deviates from the single-exponential behavior in the early time period and (2) possible existence of gas adsorption. Both the two factors cause significant permeability error in most of pressure-pulse decay methods. In this paper, we first present a thorough analysis of pressure-pulse propagation process to reveal the mechanism behind the early time and later time behaviors of pressure decay curve. Inspired by the findings from these analyses, a new scaled pressure is proposed which can: (1) be easily used to distinguish the early time and later time data and (2) make the decay curves of all cases into a single 1:1 straight line for later time. A new data-proceeding method, which calculates the apparent porosity and permeability using the same set of measured data, is then developed. The new method could not only remove the effects of the adsorption on the permeability estimation, but also identify the apparent porosity as well as proper adsorption model and parameters. The proposed method is verified by comparing with true values and calculated values through numerical simulations that cover variations in typical rock properties (porosity, permeability, slippage, and adsorption) and the experiment configurations. It is found that the new method is accurate and reliable for all test cases, whereas the Brace’s and Cui’s approaches may cause permeability error in some cases. Finally, the new method has been successfully applied to real data measured in pressure-pulse decay experiments involving different types of rocks and gases.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View