Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

Abstract

Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T 1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T 1-weighted imaging techniques. In this study, we used a dynamic quantitative T 1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark(™) all enhanced flank tumors of human glioma cells with similar maximal changes on T 1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T 1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T 1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T 1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View