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ABSTRACT 

A numerical method of computing the electromagnetic response of 

two-dimensional earth models to an oscillating magnetic dipole is pre­

sented, The general ized electromagnetic variational integral is re­

duced to a sum of two-dimensional variational integrals by Fourier 

transformation, Discretization of each two-dimensional integral is 

carried out in terms of the secondary electric fields using the finite 

element method, Following the variational principle, each harmonic in­

tegral is reduced to a set of simultaneous equations. From each set of 

electric field solutions obtained by solving the simultaneous equa­

tions, the secondary magnetic fields are computed numerically. After 

inversely Fourier transforming the secondary electric and magnetic 

fields, the total fields are finally obtained by adding the analytical­

ly calculated primary fields, 

In order to formulate the source vector associated with each set 

of simultaneous equations, both the secondary electric fields along the 

external boundary and the primary electric fields at every node must be 
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using an algorithm developed for this purpose. The secondary field 

used is the total field with the free space dipolar field subtracted. 

When a horizontal magnetic dipole is located close to or on the surface 

of the earth, it is found that the solution obtained in the manner de-

scribed is greatly in error. This is mainly due to the inadequately 

assumed primary field behaviour within the elements in the immediate 

vicinity of source. An acceptable solution has been obtained by Inl-

tially increasing the accuracy of integrations over these elements, 

Because of the systematically imp! led continuity of the electric 

field in the finite element solution, the given discontinuous conduc-

tivity is modified to a continuous one across internal boundaries. In 

the presence of a horizontal magnetic dipole, however, the charge dis-

tribution across the air-to-earth interface is so abrupt, even with 

this modification, that there appears to be a numerical limit beyond 

which the proposed method can not cope. Consequently, the qual ity of 

the solution for the horizontal magnetic dipole is found to be rela-

tively poor compared to that for the vertical magnetic dipole. 

Over a uniform half space test model, the internal consistency of 

the method developed in this thesis is demonstrated by ensuring: 1) the 

radial symmetry of the horizontal electric fields in the presence of a 

vertical magnetic dipole, 2) the reciprocity between field components. 

H due to a vertical magnetic dipole and H due to a horizontal magnet-x z 

ic dipole. The reciprocity check is also made on a two-dimensional 

model. In addition, the numerical solutions for a two-layered half 

space model in the presence of a vertical magnetic dipole are shown to 

match very well the analytic solutions obtained for a few significant 

frequencies. 



It is not possible to perform an absolute numerical check of the 

solution due to the lack of another independently developed solution 

against which it can be checked, As an alternative the solutions for 

two-dimensional models have been compared to those for some elongated 

three-dimensional models whose cross sections correspond to the two-di­

mensional models, Three-dimensional model results from a scaled tank 

model and a numerical solution obtained using the finite element method 

have been used for this check, Finally, the response of a contact mod­

el has been investigated using a transmitter-receiver pair with a fixed 

separation traversed along the surface of the earth, 
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INTRODUCTION 

The electromagnetic method has been used in a variety of geophy­

sical situations especially in mining exploration. A review of the 

common techniques has been presented by Ward (1967).lhe interpreta-

tion of electromagnetic data call in the field has been based on 

either the theoretical solutions for simple models in free space (e.g .• 

Grant and West, 1965) or on measurements made with scaled models (e.g .• 

Guar at a1. 1972; Sarma and Maru. 1 1). Only a limited number of model 

tank resul are available due to the difficulty of finding the right 

combinations of conductive materials that can be used to model realistlc 

geologic structures. Theoretical solutions for layered half spaces have 

given by Wait (1962). ischknecht (1967), Dey and Ward (1970) and 

Ryu al (1970), tol ist on1y a few. Except for a few simple bodies 

of higher order symmetry in shape such as spheres or cylinder's, all 

the electromagnetic scattering problems must be solved numerically. 

The two-dlmensional electromagnetic scattering problems have been 

studied by various authors; Patrick and ~ostic (1969), Hohmann (1970). 

Parry and ~Jard (1971L Ryu (1971). and Coggon (1971). The solutions 

presented by these authors have been restricted to geophysical explora­

tion techniques in which the source fi d is either uniform (magneto­

tellurics) or two imensional (e.g., an infinite wire. Turam. source). 

Recently. Weidelt (1975), Hohmann (1975). and Meyer (1977), have found 

solutions for three-dimensional scattering problems with arbitrary 

source using integral equations. Pridmore (1978) also has given a 

finite element solution for the scattering by a three-dimensional inhomo­

geneity buried in a conductive half space. Unfortunately. except for 



a few models with specific conductivity contrasts, disagreements exist 

among solutions for the same model with different techniques. The three 

dimensional integral equation technique can not, for example, be used if the 

source is sitting right on a surface inhomogeneity. 

Geologic models in which the electrical parameters are invarient 

with strike constitute an important class of targets for electromagnetic 

exploration. Fault contacts, large tabular bodies (dykes, contact are 

zones), etc., are models that have not yet been successfully treated 

for exploration purposes using dipolar source fields. Although these 

geological structures can be modelled by one of the three-dimensional 

modelling techniques using either the finite difference or the finite 

element method, the computing cost is prohibitive. On the other hand, 

we have not been able to use the integral equation technique on these 

models. 

In this thesis a solution has been developed for the electromagnetic 

scattering by an arbitrary two-dimensional distribution of subsurface 

conductivity due to the excitation of a magnetic dipole located on or 

above the earth surfaceo The problem is essentially three-dimensional, 

but since the half space geometry is two-dimensional in terms of the 

electric constants, the electromagnetic problem can be reduced to two 

dimensions by Fourier transformation. The theoretical basis of the 

method is the variational principle. The variational integral. the 

total electromagnetic energy contained in the prescribed system, is 

m'inimized on a discretized grid of finite elements which is used to 

approximate the continuous distribution of conductivity in the ground. 

The preliminary solution is obtained in terms of the secondary electric 
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field in harmonic space. The final solution is the inversely Fourier 

transformed secondary field plus the primary field calculated analyti­

cally. 

This technique was proposed by Ryu (1971) in his thesis using 

a finite element method. A triangle was used as the fundamental element. 

He formulated the system equation in terms of the magnetic fields~ but 

stopped short of attempting to obtain a solution mainly due to the 

fact that his intended number of harmonic solutions was too great to 

be practically undertaken. Stoyer (1974) has developed a finite 

difference solution for the same geophysical problem with the coupled 

transmission sheet analogy. Mathematically as well as physically, his 

algorithm is superior to the one presented in this thesis. All the 

electromagnetic field components are expressed in terms of two field 

variables, Hy and Ey ' polarized in the direction parallel to the 

strike. Hence~ it seems that there is no discontinuous field directly 

involved in the system equation. However. his method has the following 

major drawbacks; 1) since all but Hy and Ey are expressed in terms of 

combinations of the derivatives of the two field components, tne 

quality of the discretized numerical solution tends to be degraded. 

2) his source vector, basically obtained by taking derivatives of the 

delta function, would lead to a solution in which a substantial error 

would appear in the magnitude, but not necessary in the tilt angle 

or the ellipticity of the magnetic field, and 3) he used terminal imped­

ance for boundary condition assuming that the electromagnetic fields at 

the boundary are plane waves. This assumption is generally not accep­

table~ since even in the most optimistic situation the radiation field 

behaves proportionally to l/r across the boundary. It is obvious that 
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the closer the source approaches to the boundary, the more contamina­

ted the solut-ion would become with this boundar'y condition. 

The first two parts of the thesis have been allocated for the 

derivation of two-dimensional harmonic variational integral. A 

rigorous illustration of the relationship between a variational inte­

gral and the correspondlng 'lntegral equation has been given. The 

algorithm leading to the finite element numerical solution is pres-

cribed in third part. The formulation of the source vector as 

well as the selection of proper boundary conditions is also discussed 

in this part. lhe numerical solutions are presented in the fourth part, 

finally the results are compared to the existi analytic or numer­

ical solutions, 
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L Formulation of the Variational Integral 

The generalized geophysical electromagnetic system Is illustrated 

in Figure 1. The inhomogeneity consists of a distribution of anomalous 

conductivity as a function of position. The electric permittivity 

E and the magnetic permeability ~ have been assumed to be those values 

found in vacuum. A monochromatic time dependence of ejwt has been 

assumed for all the field variables. 

Following Morse and Feshbach (19 ), tile electromagnetic f"ield 

behaves in such a way that the total ectromagnetic energy contained 

in the system is stationary. Therefore once the energy is express 

in terms of field variables, usually in an integral 

solu on can be obtained by finding the stationary point where the 

variation of the total energy vanishes. 

Using Maxwell's equations, 

'Ix 

and the constitutive relations and Ohm's law, 

Jj::::)AH, D=:'E..f:} ,J'=() 
J 

Stratton (1941) has shown that 

0-1) 

(I -2) 

(1-3) 

(1-4) 

( 1- 5) 

This result was first derived by Poynting and Heaviside separately in 

1884. Its conventional interpretation is that the right hand side of 

(1-6), the time rate of increase of Joule heat loss and of electric and 

5 
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magnetic energy stored within the volume V, is exactly compensated by 

the left hand side, the time rate of electromagnetic energy flowing 

inward across the osed surface, 5, bounding V. 

Upon integrating the right hand side of equation (I-6) with respect 

to time, we obtain the electromagnetic energy contained in the volume 

in the frequency domain. In an active system where the system is 

excited by a finite source, the source energy must be included in the 

variational integral. Finally it can be shown that the variational 

integral I(t,R), the total electromagnetic energy, is written as 

0-7) 

where M and J are a magnetic dipole moment density and a source cur-s s 

rent density, respectively. Equation (1-7) may be further simplified by 

unifying the integrand variables in E or in R depending upon the type 

of solution desired. If the solution is sought in magnetic field, 

equation (I-7) becomes 

leR) ~ )v(1: R~- ~,,-(VxHtr}-tR· Ms J ~vJ (1-8) 

whereas, it can be rewritten in electric field as 

T (E) ~ J l ~ -~ --L- ( -.~ I - - ~ 
J.. - v l 2.Wr E ~ zwj« "X E.) + jWE.-. ::rsJ o\~ (I -9) 

where k is the propagation constant defined by 

LL 
I'<.. = t.,):>'}-t f.. ~ J G"""w }L 

The two variational integrals (1-8) and (1-9) are physically equivalent 

in the sence that both represent the same energy contained in the pres­

cribed system. 

It can be shown, Appendix I, that the stationary condition imposed 

upon the variational integrals I(R) and I(E) results in the following 
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differential equations governing R and ~. respectively: 
\ ~-

H - 1«,2." '\J X \J X M -= ~~ M $ , (I 11) 

(I-12) 

From an analytical point of view. either of these equations produces 

an analytic solution provided that the given geometry guanantees its ex-

stence. Since there exists one analytic solution exclusively in each 

one of the subdomains separated by a number 1 boundaries. there 

are in general two solutions at the internal boundary as the eld point 

is approached from both directions. Whether the solutions are identical 

or not is strictly dependent upon the boundary cond; on deduced from 

the physical property of the field itself. Electric fields. for example. 

undergo step discontinuities at the boundary between regions of differ-

ent conductivi 

Within the context of a discretized numerical scheme however. we 

are not allowed to have two solutions at a nodal point, Consequently, 

in the a ence of rna c inhomogenei es, it would appear that the 

con nuity of magn c elds would make variational integral (I~8) the 

right choice for our purpose, Unfortunately. we have encountered a se-

vere numerical problem with this equation in the computing process, As 

can be noticed from equation (I-11). the magnitude of the coefficient of 

wx v x H term decreases proportionally from l/wE: to 1/0 across the air-to 

-earth interface. For common geological situations. a typical contrast 

of this coefficient across the interface is somewhere between 105 to 109, 

This is believed to have been the major reason why proper couplings among 

three components of magnetic fields could not, practically. be achieved 

across the interface in the numerical scheme. The same difficulty has 
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been found by Pridmore (1978) in his development of a finite element 

solution 3-D electromagnetic scattering problem. 

We have thus decided to seek solutions in electric fields using 

on (1-9). In to eliminate the apparent contradiction in-

herently associated with the electric field solution discussed ier. 

we have subs tuted a narrow zone for the region of discontinuous con-

ivity across an internal boundary. Within s zone a smooth trans-

ition of conductivity change has been imposed. The modi cation can 

be easily extended a cornered boundary. Appendix II shows the de-

ta'lled modifi "i on procedure and some of the neces sa ry i ntegrat ions for 

va integrals. 



ITo Harmonic Version of Variational Integral 

Ao Two~sLirnensional variational integral 

In part I we have discussed how the lized variational inte-

is formulated in 3-D. A particular version of the variational in-

the one in terms of ectric eld. has been selected on the 

sis of numerical consideration. 

yen a two-dimensional geometry, however, we can find the solon 

by inl any er nsform; tem and summing up a nite 

number of utions obtained in harmonic space. Stoyer (1974) presented 

a nite difference solution using the Fourier transform technique. Ryu 

(1971) using a nite element method. attempted to formulate essential-

1 Y same problem presented here. Using the same technique, we will 

rst transform out the strike directional dependence. 

in. we have chosen a magnetic dipole source ented in 

ree on perpendicular to s ke. With reference gure 1 it is 

ass the y axis is the s ke di recti on, The symmetry of every 

c d component stays unchang in y so long as 

s on t • a \ 1. e .• • are symrnetri c) . sourcei 

1ng er in " a the appropri I symmetry ons 

n Yo vve may te: 

,-
I ( )( ) I J- ) shv~ ~ 0( ~j } 
" 

01-1) 

it j"'" ~ (x )~.'1) l) c06k.';:lj 
;:) 

~kj ) (I1-2) 

(II-3) 

a 
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(11-4) 

(II-5) 

H,}(X)'j}J--)'-=:k ~~I~(X)«!jl~) co~k.!1l::1 o\~) (II-6) 
o 

where the transform pair is defined by 

-l' ( x J ~I}-) = ! 1'( x.J.!:J)~) e.-;~.!j::l d.~~ . (II-7) --
If the artificial source is a magnetic dipole Ms ' the source cur­

rent density Js present in the integral (1-9) may be found by 

( II -8) 

\'\Ihere 

(II-9) 

Equation (11-8) is not a very well defined function in view of the 

delta function associated with Ms' Direct incorporation of the source 

term \j x As into a discretized numerical scheme would result in a serious 

technical problem. The difficulty may be removed if the solution is 

sought in terms of the secondary field. 

To simplify expressions let us use Js instead of \j x Ms The sym­

metry in y for each of the Cartesian components of Js will be controlled 

by the transmitting Ms and should be the same as that for the electric 

fi e 1 d. Thus. 

"'" (11-10) 
]"' J\ ( 't() :1 ) ~) = ~\ :Ix ( )( ) ~::l ) } ) 5~~~ Ij 0'\ ~~ ) II} 

0 

J.:J()(.)!1) 1) "::: {- [.::::r.::J(xJ~~J)-) Cv6 ~-:J ~ o\k~) (II-l1) 

J,} (".)~) }) - ~ J"""'.:r). ( X ) ~!1 J 2r) S~~!1 q~.:l. (11-12) 
0 

11 
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Instead of directly substituting Fourier integrals into the varia-

tional integral (1-9), we first approximate them using Fourier series. 

Figure 2 shows a corresponding two-dimensional geometry for which an 

approximate numerical solution is sought, Using Fourier cosine and sine 

series expansions, we have 

N 

(II-B) 

(II-14) 

where IT; The distance L should be long enough to justify our 

assumption that the half space is two-dimensional. 

Substituting Fourier series representations of E and Js into equa-

tion (I 9), we 0 n the following harmonic version of the variational 

integral: after dropping (x, ni' z), 

It 4.. 

Lo,b 1 ",j t~ + j :Sl.v..~<-!jI.JJJ qv 

~J I IN ['2> 
v ~L:;)« l ~o l ~j (J~:S~1;:;j) ~;j..(~Lo~P1Gj)J 

t~J (jf::xSNvc-1z~) '-~JE.}SAM..~.:,;j~ r~ (lI-15) 

+ r:x (E:~ c. .. .,s 1t:~) -:~ liE", S~ft:~lJ1:.JJ J'<"- qlr 

.LJ I J!Ii -+ L:- 1/ 5:) l ~o(jE:x$4L-!:1rx + .E.tlc.o~1'::1 I".j +.J,EJ.:S~7L~I.J)J 

N . i ~y~ ~~ 7 L- ~ Tx + :::r,!:l Li7.5 (i.. <j L-~ T J 'S~I t '4 C_J)J 0{ v: 



y 

z 

M s 

Ai r 

Figure 2. A two-dimensional geophysical electromagnetic 

system in which a magnetic dipole is located 

on or above the earth surface 
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Carrying out integration along y from -L to L. we can reduce equation 

(11-15) into a much simplified two-dimensional form. Because of the 

orthogonality characterizing Fourier series, all but the squared terms 

disappear after integration, For the squared terms. we have 

L 

) (co~~1t:::\) s,w..2.1.:. ~) o{j -=. L; YJ c. j <::> • 
-L ( 

Hence, the variational integral becomes 

where 

~ I I [I\'''" k, .>.. ... 
Ic. l EJ :=. L: ) s :>..w';:M. (- 'E:)( -+ E~ - E ~ ) 

~ l (J7t::E.j - ~ t - (~)+ - '"'{f):t-+ ( 7>~'4 -J1(tEJJ 
+ Y:> ( -kx Jx + .E-lj :i..'j - E.J JJ- ) J 0\ l( 0\,} ) 

(II-H) 

(II-17) 

(11-18) 

and 10(EO) is the zero harmonic variational integral, in which the 

electric field is polarized only in the direction parallel to the strike, 

B. Derivation of the wave equation for the secondary field 

The error contained in the total field numerical solution may be 

decomposed into two parts; the one carried by the primary field solution 

and the other by the secondary field solution, If we know the primary 

eld solution analytically, the unnecessarily added error associated 

with the primary field numerical solution can be eliminated, Properly 

manipulating the system matrix equation, Coggon (1971) has demonstrated 

the advantage of the scheme in which the solution is sought in terms of 

the secondary field. As has been mentioned in the previous section, 

14 



solving for the secondary field becomes not only useful but necessary in 

a situation where the original source is a magnetic dipole shown by 

(11-8)0 Even though the existence of the volume integral of the deri-

vative of the delta function is mathematically guaranteed, it is numeri-

cally dangerous as far as the quality of the solution is concerned. 

From the principle of superposition. 

= 
-:; 
E ) (II-19) 

where the superscripts p and s denote the primary and secondary fields 

of E. respectively. Substituting {II-19};nto (11-17) and taking varia­

-5 tions with respect to El • l= 1.2. 00'1 N. with 

and following Hildebrand (1965). in which 

(u ')u)d..x 
) 0)( 

we obtain the following N independent sets of equations: 
I ~ ~ 
)s w/t (- F", tEll. 4- F.'j J'E~ - F.J. S-El) tAx oiJ,. 

where 

(II-20) 

{I 1-21) 

(11-22) 

(I 1-23) 

(I1-24) 

(II-25) 
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line encircling the cross section, the last two line integrals in equa-

tion (11-22) will disappear. Depending upon the choice of the primary 

field. the secondary field would be either the total field minus the 

free space dipolar field or the scattered d caused only by lateral 

inhomogeneities. In ther case it has been assumed that the effect of 

the central conductivity va ations is negligible at the external bound-

ary. 

Since the vadations of the three components of the secondary field 

ES are independently arbitrary within the cross section S. their coeffi-

cients F • F and F must vanish identically. Hence. we have the x y. z 

following Euler equations for each L. L= 1.2 •...• N: 

!=x = F:j = F,J- -= o. (11-26) 

The last result is the same as the vector wave equation (1-12) provided 

that ~j and ~~ .. substituted by jky and -k~. respectively. This conforms 

that the solution obtained using variational integral is equivalent to 

that directly obtained from wave equation. 

The soll! ons for the last three equations given by (II-26) have 

been in terms of components of the 1 fi el d Eo I f we kn0i1l/ the 

primi'l'ry field -p E ., usually the s dipolar fi d or the field in 

the presence of a layered half space., vie can eliminate the source term 

in the following way. Let us write 

where k is the propagation constant of the primary field in the medium 
p 

properly chosen. Then we can rewrite the first equation of (11-26) as 

16 



= o. (I 1- 28) 

The x-component scalar wave equation for the primary field can simply 

be transcribed from the vector wave equation (1-12). For ky = 11' 

(II 29) 

Subtracting (11-29) from (11-28). we obtain 

( II-30) 

J ) 
p 

(II-32) 

The last three equations are coupled inhomogeneous scalar wave equations 

in terms of the secondary fields E!. E~. and s The original source 

Js has been eliminated from the system and substituted by -k! ~p 

The physical interpreta on for these uations can be made using 

the concept of the scattef'i n~f'rent (Harrington, 1961). Upon bei ng 

combim~d together. with j1t, and ~(fL~ substituted by 

tively. these equations can be rewritten as 

Supposing that 

and 

) ) 

then equation (II-33) can be manipulated into 

and • respec-

(I 1-33) 

(II-34) 

(II-35) 

(II-36) 
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where the scattering current JS is defined by 

J S = \~~ "r) (I I-37) 

The integral equation solution for equation (11-36) was given by Harring-

ton (1961) as 

E.s(;r) = j r(\F-;y../). JS( /) ""v-~ 
V 

(I I -38) 

where FCr;r') is a tensor Green's function relating ES at r to an ele­

ment of current JS at ~i. Solutions using this approach have been found 

by Hohmann (1971 & 1975). Meyer (1977), and lee (1978) following their 

own particular geophysical interests. 

18 



III. Field Approximation 

A, Finite element method 

The basic equation. a two-dimensional variational integral, has 

been derived in the previous section by transforming out the strike 

directional dependence using Fourier series expensions. Rewriting equa-

tion (11-18) for k • 
Y 

(I I 1 ) 

The approximation to integral (III-l) can be made using a finite ement 

technique. The idea is that the integral can be approximately evalua-

ted in terms of a finite number of unknowns by forcing the localized 

field to behave in a simple but physically acceptable way. As a result, 

the integral. upon being integrated. will become the sum of properly 

weighted discretized unknown electric fields in a quadratic form. 

Following the variational principle. which is equivalent to the least 

square criterion in this case. a system of linear equations will be gen-

erated. 

Throughout the formulation process a rectangle has been used as 

the fundamental element. The prescribed base function interpolates 

electric fields bi-linearly in x-z plane. The continuity of electric 

field is preserved across cell boundaries by modification of the original 

step like conductivity structure to a continuous one (Appendix II). 

Let us write the field f defined within a rectangle (Figure 3) as 

(III-2) 

19 



The coefficients a. b. c, and d are functions of fixed positions (xo. Zo), 
1 J 

i. j "" 1~4, and of the unknown fields fi' i '" 1-4, designated at four 

nodal pointso Using shape function N (Zienkiew;cz, 1971). f may be con-

veniently rewritten in a matrix form as 

1- = N\; (III-3) 

where II II indicates a matrix and 

f T = i-, -J~ .f~ ';1-) ) 

Ii T =:, ( N\ N:L NJ, N+ ) = ( I X ~ 

~ -' X;..;}:;) - x\~~ XI a-\ ~ X ... }j ~ A 

). A 
~ ) (III-4) 

-J.3 j.j -), .;}ol 

-XL Xl ~Xl XL 

-\ ~I 

II~I is the area of the rectangl e and lip indicates the transpose of a 

matrix. The derivatives of f can be easily found from (11I-4) as 

1±, ;x !::i: L - (0 0 )./J.± )X ~ 

- ((,., ( .. c~ L+) . , (III-5) 

1L ., 
NT • .J.. (0 'I().A.j. 

)~ -- >;}- - 0 - -
- ( ]) I b~ th D+)· ± (III-6) 

where • i '" 1-4. and Do, j ::::: 1-4. are linear functions of z, and 
J 

functions of x, respectively. 

Before we proceed to the next step. let us reduce the variational 

integral (1II-1) so that the variation can be directly taken with respect 

to the secondary electric field Using (11-19) and (II-27), we write 
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Figure 3. A finite element grid structure and 

notations used for a rectangle 
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where 

(III-8) 

Integrating those derivatives of the secondary electric fields by parts, 

we can rewrite (111-7) as 

I 1 E(k-!j) J =: Il E p ("'-.:1 ) J + Q.. 

t )J2.~)A( -~t + E~~ - ) - ~ t (J~ t::;} -
_ I ) "<JEt :t,. I ';;;E.1. _L..::$ )"-l 
-- I. - ~<Y) + \~ -J~~~.l( ) 

(III-g) 

where 

f\ 1.( L)I'(;t:~_~3)Es+I-1e E;>f_~)E.:;,t\ 0{ 
\.:lL - L 1 x w;U l \ P;} PX x I!.!j:} '&>:;} :!:l j ;} X 

- L).} ~>-t ( ~~ -J~E~ )E~te~~~ ~ W p=tj I,/'Ij.- (II 1-1 0) 
p 

l! --L_ rEs 1 (k.... k- "- l' -k ,,~ ') (PC P ~ 'El ) - l + L).s W'"JA. l- x l P" j )~x.. -" ::1 PX t:d} "2>;}x'-~ -J w./'::rl( ) 
P l' 

S ~ 10:: P ( ')ex ~ 'l> "- "2>:>' r L 
t C:.j l'-Y E.!:j -:;~ 7iX: T tI ~ )t ( dJ("- -t 21l"') E.::J ~; Wfl::r ~ J 

!. J I(I!>~ b."- l' -k ~ :<> :<>.c'!' pEf lJ 
- El~·'-t'-~);E~~J :.t:l"2>~ -~(?!- ~)-Jw~:r~J ~xo1~. 

The third integral in (III-10) vanishes since the coefficients of ES
• x 

s s Ey• and Ez are the three scalar entities of the primary field vector 

wave equation shown by equation (1-12). At each internal cell boundary 

the first and the second integrals of (II1-10) also cancel out analy-

tically between adjacent cells. Therefore Q becomes a constant composed 

of the line integrals evaluated at external boundaries where both the 
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mary and the secondary electric elds are known. Since the varia-

tion of a constant is zero, ve va ienal integral becomes 

the i ntegY'a 1 rt of "10n (III-g) , which is 

shown as 

where super 

7~\ -> ( 
,.~.".. ~ 

~.=J 

rna 

pt e indic 

elementary (12 x 12) 

given by 
K e __ 

(~ 
;v 

X. + 

ing 

) 

4.. '") 

+ ( ~:J~~ 

o(x (IIr-ll) 

t la tion can 

T 
(III-12) 

a 

) ~ 

souy'ce mat x are 

(III-B) 

(III-14) 

the variable ces e a ~2 are given as follows: 

IN'.' o 1./1 

-/J"v," 0 -AldV.. 0 

-A/vV,., 0 0 

tJuVa. co (';) 

-/1/2/1/... 0 

Symmetric 

I) o -N,N4- 0 0 \ 

NdJ3 0 0 11/, Al4- 0 

I) -A},N.:. 0 a -~N4. 

I:) -,V~> 0 0 1 
Na.r4" : N2:N+ a " 
" -N ... Nj v v 

co 0 -t~~N4 a co 

N~N:3 0 0 /V-sN4- 0 

~tJ3/1/J I) 0 -/11.3 /1/4 
~N+A4 {;) <) 

N+;V4 0 

} 

(III-15) 
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After integration over the rectangular area (refer to the Table 1). 

the elementary system matrix !e is stored in the total system matrix ~. 

The elementary source vector is a column matrix obtained by multiplying 

the source matrix K~ by the primary electric eld EP. After all the 
~ 

elementary matrices are added together. the matrix representation of the 

total variational integral becomes 

(III-l7) 

where the superscript p indic that the source vector is originated 

from the primary d. The tal system x K is sparse, ba and 

symmetric, necessarily dia l1y dominant but ve definite~ 

Following t variational principle. the condition by which the 

vari onal integral (II1-17) becomes stationary is that: 

o. (III-18) 

The last equation generates a set of simultaneous linear equations 

This is the basic equation from which the secondary electric eld will 

be solved. The unique solution however cannot be obtain at this stage 

without imposing the properly chosen boundary conditions (Stratton, 1941). 

B. Boundary conditio~ 

In a brief discussion in part II. we have been able to derive wave 

equations by forcing the line integrals written in a variational form 

to vanish (refer to equation (II-22)). There are two distinctive con-

ditions available. These conditions are: 

(1) the secondary tangential electric fields are prescribed 

on the line f encircling S, so that 

(III-20) 
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Table 

Table of integrations for the evaluations of Ke and Ke . 
~s 

i E' f(x,z) F f(x,z) 

.0, /9 N.N. , i '" 1--4 0Z/DX/3 C . C. , i '" 1---4 
I I I I 

A /18 N,N2,N,N4,N2N3,N3N4 -DZ/DX/3 C,C 2,C
3
C4 

/36 N,N
3

,N 2N4 DZ/ox/6 C1C4,C 2C
3 

-DZ/6 C1N"C,N2,C4N3,C4N4 -DZ/DX/6 C,c3,C 2C4 

-OZ/12 C,N 3,C 1N4,C lf N, ,ClfN 2 DX/DZ/3 D.O. , i '" 1-4 
I I 

DZ/6 C2N"C2N2,C3N3,C3N4 -DX/0z/3 °1 04,D 203 

0Z/12 C2N3,C2N4,C3N"C3N2 OX/OZ/6 0102,°3°4 

-Dx/6 D,N1,D1N4,D2N2,02N3 DX/DZ/6 D1D3'D 204 

-DX/12 D,N 2,D,N 3,D 2N"02N4 C10, ,C,D2,C2D3,C2D4' 
0.25 

Dx/6 D3N2,D3N3,D4Nl,D4N4 
C3D3,C3D4,C4Dl,C4D2 

C1D3,C1D4,C2Dl,C2D2' 
-0.25 

DX/12 D3N"D3N4,D4N2,D4N3 C3Dl,C302,C4D3,C404 

C. '" (JI N ./»x, O. '" 2» N ./~ z ; i '" 1- 4 
I I I I 

ox '" x2 - xl' DZ ~ z - z, and ~ ~ OX"OZ 
3 2 
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(2) tangential magnetic fields are zero. that is 

;yt x R I -= o. 
fL 

(III-2l) 

Condition (2) would be the case in which the boundary material 

was a perfect magnetic conductor. Under this condition, the resultant 

tangential component of electric field. ~xE, would be exactly doubled 

at the boundary due to perfect reflection. The same condition could 

be simulated using the method of images. Although this is rarely a 

reali c condition. the concept can be made use of in conjunction with 

the complementary condition where the boundary material is a perrect 

electric conductor, so that the opposite phenomena would take place 

(see Babinet's principle; Jackson, 1967). In practice. however. this 

is not the economical way of approaching the problem. for the scheme 

would require too many computations in order to annihil the various 

order of reflections expected to occur along the closed boundary. 

Throughout this study, we have used boundary condition (1), a 

common Dirichlet type boundary condition. With the secondary electric 

fields prescribed at the boundary, equation (111-19) can be partitioned 

into 

~i:.;: kS t:.b b~ B~ 
~l,... -'-

-

1:$bL. IS bb BP 
-b 

(III-22) 
) 

where the subscript i indicates that the variable attached to it is de-

fined inside the boundary, and the subscript b at the boundary. Since 

ES is known, the equation can be reduced into -b 

(III-23) 
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where the resultant source vector B is 

B = -B~ - K· b" Eb" 
- -1 -1 -

(III-24) 

The secondary electric field obtained by solving equation (III-23) 

must be unique by definition. The error associated with the solution 

is strictly subject to the degree of accuracy implemented in the pro-

cess of discretizing the variational integral. 

C. Source vector 

In formulating the resultant source vector ~. we have found that 

it is necessary to know not only the secondary electric fields along 

the external boundary but the primary fields at every nodal point in 

the inhomogeneous region, The free space dipolar field has been used 

for the primary field. One of the major advantages of the scheme is 

that it only requires the calculation of Bessel functions such as KO 

and K" 

The secondary electric field at the boundary is the total field 

subtracted by the free space dipolar field. The total electric field 

in k harmonic space can be obtained by Fourier transforming the solution 
y 

obtained for a layered half-space. The layered half-space responses due 

to a horizontal magnetic dipole and a horizontal loop have been given 

by Dey and Ward (1970) and Ryu et al (1970), respectively. The Fourier 

transformation approach howeve~would entail the following technical 

problems: 

(1) a large number of field point should be accounted for in order 

to retain the highest possible harmonic component. 

(2) it "'lOulct be difficult to compute boundary values along the 

too and the bottom boundaries in harm0~ic space if the side boundaries 
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(~'r) + 

The differential operators ;'j and have always been treated as 

constants j ky and , respectivelyo 
- s The secondary potentia'l IT* due to the presence of the layered 

half space is given by Appendix 1110 For the sake of simplicity~ let 

us choose the secondary Hertz potential in the air in the presence of 

a vertical magnetic d'ipole, Rewriting the secondary part of equation 

(9) derived in Appendix III 

(X~ 

where Ao is the reflec on coefficient found by matching boundary con­

diti ons, 

ti ting (111-29) into (III ), ~A,je find the secondary electric 

fiel in the air as 

(III-30) 

(III 1) 
s 

(I II -32) 

These secondary electric fields have been used for the boundary values 

in the air. 
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If the model of interest has side boundaries of different half 

space structures, the secondary electric field along the top boundary may 

be approximated by the fonowing interpolation schemeo Instead of inter-

polating the complex fields themselves, we would rather interpolate the 

reflection coefficients assuming that the value falls in the range bounded 

by two reflection coefficients; one obtained for the left side boundary 

Ai ' and the other for the right side boundary, A~ 0 Needless to say, 

both side boundaries must be placed sufficiently far from the central 

region of the model, so that the reflection coefficients obtained for 

both layered half spaces may be effectively valid. The effective re-

flection coefficient, A ,is approximated by a function of x and the 

horizontal wave numberA.= (k2 + k2)1/2 as x y , 

A~=-~[llt-kVi-k(~ ~ \:~)}A~ +tl+~~(~ R..~ ~)}A~J/ (II1-33) 

where 0 is the distance between the two side boundaries andc(is a func-

ti on of A. arbitrarily def; ned as 

The interpolation function (I1I-33) represents a curve basically inter­

polating the two reflection coefficients A~ and A~ in the form of an 

exponential transition. The larger the horizontal wave number~ becomes, 

the more rapid transition the reflection coefficient experiences along 

x across the center x = o. 
The secondary electric fields along the top boundary have been 

computed using the effective reflection coefficient, A- , given by 

(111-33)0 The similar procedure has been taken for the computations of 

the boundary values along the bottom boundary. 
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IV. Evaluation of the Numerical Solution 

A. Secondary field solution 

The secondary electric field for a given k has been obtained by 
y 

directly solving matrix equation (111-23) formulated in the previous 

section. The direct solution of (111-23) may generally be written as 

E~ 
-1 

-1 
K .. " B. 
~11 - UV-l) 

A complex version of one of the direct solution routines written 

by Reid (1972) has been used. The algorithm u for the inversion 

of K." a square matrix of order n with bandwidth m, is Symmetric 
-11 

Cholesky Decomposition (Martin and Wilkinson. 1965). According to the 

theorem, the symmetric. positive definite matrix K .. has a unique 
-11 

lower triangular matrix L of the same order and bandwidth such that 

T LL :: K ... 
- -11 

Therefore the solution E~ can alternately be found by 
-1 

= (hT)-l. (h-l~), (IV··3) 

The routine uses random disc access facilities in transferring 

data from or to the working storage area, The decomposition process 

(I 2) requires approximately nx(m+l )x(m+2)/2 multiplications and 

n square root operations of complex numbers. Once the triangular 

matrix L is found. each solution corresponds an additional source 

vector B requires only 2xnx(m+l) multiplications in step (IV-3). 

It has been found that this method uses substantially less computing 

time than the matrix inversion scheme using a Gaussian elimination 

algorithm. For the solution of complex equations whose system matrix 

is of n 1980 and m = 76, it takes 25 CPU seconds on the CDC 7600 

at Laltwence Berkeley Laboratory using Gaussian ennrination technique; 
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whereas only 6 CPU seconds are required for the same result using the 

decomposition technique. 

A mesh size of 55 x 18, Figure 3, has been used for all the models 

studied here. The system matrix K .. is of order 2970 with its maxi­
-11 

mum half bandwidth of 60. It takes 21 CPU seconds for a complete solu­

tion ES(k ) on the CDC 7600. Each solution for an additional source 
y 

vector requires 5 CPU seconds including the computing time spent for 

the formulation of source vector itself. 

The first test model is a uniform half space of 100 ohm-meter 

resistivity. The transmitter is located at 2 meters above the earth 

surface and a frequency of 25 kHz is used. 

The secondary electric fieldsEs(k ) and ES(k ) due to a vertical x y y y 

magnetic dipole of unit moment have been plotted in Figure 4 and Figure 

5, respectively. The field point is located at the surface 18 meters 

away from the source to the right. Throughout the entire range of 

k values the numerical solutions obtained are virtually identical to y 

the analytic solutions. Although some errors are observed towards the 

end of k axis, their contributions, after being inversely Fourier y 

transformed. will be insignificant. 

With the same model the secondary electric fields ES(k ) and x y 

ES(k ) due to a horizontal magnetic dipole of unit moment have been y y 

calculated. The same frequency and source position have been used. 

Figure 6 and Figure 7 show the real and imaginary parts of ES(k ) and x y 

E~(ky) calculated at the same field point. respectively. The domin-

ating parts, the real part of ES(k ) in Figure 6 and the imaginary part x y 

of ES(k ) in Figure 7. deviate no more than a few percent from the y y 

analytic solutions. However, we have found substantial errors in the 
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"imaginary part of E~(~j) and in the real part of E~ (~.'j) at higher 

values of k, These errors are considered unavoidable with this method 
y 

since we have deliberately introduced the cause of these errors in the 

process of discretizing the variational integral 0 Although the concept 

of a soft boundary (appendix II) guarantees its continuity. the normal 

component of electric fields changes so rapidly across the air-to-

earth interface that the common type of base functions described in a 

finite element may not be appropriate, Physically, ignoring displace­

ment current. the vertical electric field completly shifts its phase 

across the interface due to the charges accumulated on the surface, 

Since the vertical electric field had to be forced to be continuous 

across the air-to-earth interface in the numerical regime. the error 

would also appear in the tangential components of electric fields 

through coupling as has been shown by the Figures 6 and 7, 

Given the base function. the accuracy of the finite element solu­

tion is primarily dictated by the cell size. The cell size is usually 

described in terms of a fraction of a skin depth characterizing the 

degree of attenuation of the propagating field intensity, Since the 

effective skin depth gradually decreases and finally becomes inversely 

proportional to k as k increases, the cell size should also decrease 
y y 

accordingly, Redefining the cell size of a fixed model ;s time consuming, 

yet the scheme is necessary to retain the consistency of solution 

qualities for varying ky values, This has been done by dividing the 

desired ky range into a few bands. for each of which the proper cell 

size has been described, 

The secondary magnetic fields have been numerically computed by 

~1ax\'vell j s equation (1-2), The necessary derivatives of electric fields 
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have been obtained by initially interpolating them over the area of 

interest. Each component of the secondary electric fields has been 

interpolated by an optimum bi-cubic spline fit algorithm. 

The secondary electric and magnetic fields in y may be obtained 

by inverse Fourier transformation. The Fourier integrals given by 

(11-1) through (11-6) have been used for this purpose. The harmonic 

fields have been interpolated in wave number k. A three point 
y 

quadratic interpolation scheme has been used for the cumulative sum of 

a piece wise Fourier integral 

(IV-4) 

where U L = Li: + I and t~ = LL.-\ with ~.':l\I) =- 0 The number of 

piece wise integrations p is typically 7, or 15 wave numbers roughly 

logarithmically spaced. The zero harmonic fields for those components 

symmetric in y may be easily deduced to be the same as the lowest har­

monic components (refer to the Figures 5 and 7). For those components 

anti-symmetric in y the zero harmonic fields are analytically zero. 

Stoyer (1974) used this interpolation scheme in his development of 

a finite difference solution. He checked the quality of this inter­

polation scheme with an analytically calculated half space solution, 

and found that the error contained in the reproduced solution using 17 

harmonics is within one percent. 

B. rica' check 

The secondary electric fields in the space domain have been com­

puted using equation (IV-4). The harmonic electric fields were those 

previously calculated in the presence of a vertical magnetic dipole 

located 2 meters above a half space of 100 ohm-meter resistivity, Model I. 
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Two horizontal components of the secondary electric fields have been 

plotted in Figure 8. The apparent radial symmetry of the horizontal 

electric fields can be observed. A maximum difference of 5 percent in 

magnitude can be seen between the two Cartesian components, Ey and -Ex' 

computed along the two horizontal axes, x and y, respectively. The 

results show one of the internal consistencies of the solution developed 

here. 

Another test run has been made on the same model, Model I, to 

ensure the reciprocity between field components; Hx due to a vertical 

magnetic dipole and Hz due to a horizontal magnetic dipole. In ther 

case the source is located the surface of 100 ohm-meter half space 

and the frequency is 100 The total fields have been obtained by 

superposing the primary and the secondary elds. The primary field 

in free space can be easily computed using equations (II1-26) and 

(III-27), for which the primary magnetic Hertz potential 1T*t' is 

given by 

n*P l '(") (IV-5) 

The magnitudes and phases of Hx and Hz have been plotted in 

Figure 9 and Figure 10, respectively. In each Figure. curve 1 repre-

sents Hx due to a vertical magnetic dipole, and curve 2 represents 

H due to a horizontal magnetic dipole. Approximately a difference of z 
two orders of magnitude has been observed between the two curves. One 

of the possible reasons for the vast discrepancy may have been that 

the source. in terms of the primary fields in this case, has not been 

treated properly in the process of discretizing the variational integral 

insect i on II I . 
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Rewriting the last term of the right hand side of equation (III~ll) 

and designating it I yields: 
s 

within a very small rectangle in the immediate vicinity of source, 

(IV-6) 

Figure 11. the secondary electric fields may be treated as constants 

in contrast with the rapidly changing primary fields. The integration 

of the common non-zero term ESEP can be written as 
y y 

x"-
I~ ""' ~ C.) J U~~) K\ (1'("') q,;} c{)I.. 

XI J... '\ ) 
(Iv -7) 

in the presence of a vertical magnetic dipole, and 

X;L ~3 
~ ( j }(J-Thl k(1r) C\~O\X 

>XI :.h 'I I ) 
(IV-8 ) 

in the presence of a horizontal magnetic dipole. where 

and 

Changing variables. x-x,'"""x and z+h~ Z, and taking the leading 

term 1/'1 r of the seri es representa ti on of K, ( ?' r). whi ch is va 1 i d for 

small Ir (Abramowitz and Stegun, 1964). we can approx'imately evaluate 

the integral (Iv-7) as 

~IV ~_. _ c I h.+ j)~ j Di( ~x~~ 
s - ) h. D X'''+.}A. 0\)(' ~~ 

\~+j)l: 
::: - )k. 4 (Iv-g) 

If we let OX = OZ and t = DX/z. then the last integral for h~O becomes 

(Grabner and Hofreiter. 1958) 
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(IV-l0) 

SimilarlY5 in the presence of a horizontal magnetic dipole, equation 

(IV-8) can be approximated as 

H (DX, 
l.s ~ ~) ~ ( 

() 

x'--+ (D:t.+I'l.)2._ ) o\x . 
)(4 -+ h.."-

(IV-ll) 

Changing variable X =h..t , one can show that (Grabner and Hofreiter, 

1958) 

(IV-12) 

Keeping in mind those pseudo-analytic results given by equations 

(IV-10) and (IV-12), let us find out what source term we had for the 

numerical equation (111-12). Assuming constant secondary electric 

fields and using the same approximation for Kl (1'("), we may \vrite the 

source term due to a vertical magnetic dipole as 

IV. (j)~ DX t x~ 
~ = - c) ) L"-I Nt- l X.:.2+(~.:tk)'" j .::{x o\}-

" 0 

(Iv-l3) 

In the presence of a horizontal magnetic dipole, we have 

Hence, with OX = OZ, we obtain 
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~ 
1/ . 

~1:>X Is - -c ) 

h,-';o 8 (IV-15) 

£NwL rK . c 
11 l(:z.". ~ I - T k. --" 0 

.s 
Yl70 

(IV 16) 

When the source is close to or on the surface. the fcregoing 

analyses suggest us the following conclusions: 

(1) the numerically computed source term in the presence of a 

vertical magnetic dipole is independent of source height h and in fact 

is similar to the one analytically computed. 

(2) In view of conclusion (1), the numerically obtained vertical 

magnetic dipole solution will be effectively the same as the analytic 

solution. 

unless the cell size DX is comparable with source height h, 

the solution obtained in the presence of a horozontal magnetic dipole 

vvill be absurd. 

In compliance with conclusion (3). the modified source term has 

been computed initially by subdividing the cell in the immediate 

vicinity of source (refer to the cellon the left in Figure 11). Assum­

ing that the primary field is bi-linear in each one of the subdivided 

cells. the numerical representation of the each source term in equation 

(111-11) can be rewritten as 

sT P 
l j ~~ NT ~P (IV-l7) L N O\X olJ-.- . 

~ "'-\ L L',.i:. w'jA -

where p is the number of subdivided cells and ~T F' is the pri-

mary electric field in the ith subdivided cell. The secondary electric 

field remains bi-linear in the original cell. 
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Curve 3 drawn in gure 10 and Figure 11 has been obtained 

respectively in the presence of a horizontal magnetic dipole using the 

result given by (IV-17). In the vicinity of the source a maximum of 

15 percent difference in magnitude can be observed. However, the phase 

of Hz shows substantial fluctuations mostly confined in the region 

within a half skin depth from the source. The vertical electric field 

across the air-to-earth interface seems to have played a major role in 

causing the fluctuation. Although the solution shows near source phase 

fluctuations in H , we consider that reciprocity apparently holds. z 
The solution with the modified source term given by (IV-17) due to 

a vertical magnetic dipole has not been plotted because it almost over-

laps the original solution, curve 19 as has been predicted by conclu-

sian (2). The fact that the two solutions are identical also indicates 

that the solution is convergent. 

The validity of the solution presented here has been tested on a 

two-layered half space, Model II. consists of a 50 meters thick over-

burden of 10 ohm-meter resistivity over a 100 ohm-meter half space. A 

vertical magnetic dipole of unit moment is located at .1 meter above 

the surface and 100 meters to the left of the observation point. Figure 

12 and Figure 13 show the analytically computed frequency sounding curves 

in terms of magnitudes and phases of Hand H • respectively. Three 
x z 

frequencies, 36 Hz, 2.5 kHz, and 10.0 kHz have been selected on the 

basis of their significant roles in the curves. The numerical solutions 

for the selected frequencies are almost identical to the analytic solu-

tions except for the phase of Hz at 10.0 kHz, where the phase is analyti­

cally minimim. 

As an absolute check regarding the quality of the solution, it 
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would be preferable to have another two-dimensional solution developed 

independently from the method described here. Unfortunately, due to 

the lack of a competitive solution, we have not been able to make a direct 

comparison between the two-dimensional solutions. As a matter of conven-

ience, three-dimensional model results have been used for the numerical 

checks. 

One of the solutions for three-dimensional electromagnetic scatter-

ing problems has been developed by Pridmore (1978) using finite element 

technique. The scattering by a 1 ohm-meter conductor of size 30X120X90 

cubic meters buried in the half space of 30 ohm-meter resistivity has 

been plotted in Figure 14 and Figure 15 in terms of the real and the 

imaginary parts of the secondary H , respectively. The depth of burial z 
is 30 meters and the source is a vertical magnetic dipole located at 

.1 meter above the surface 75 meters to the left of the center of the 

conductor. The given magnetic moment is 4nampere-meter2 and the fre-

quency used is 1.0kHz. The anomaly in Hz plotted in the Figures has 

been obtained in the following two steps (Pridmore. 1978); 1) the elec-

tric field in the conductor has been calculated by the finite element 

method. 2) the magnetic field at the surface has been obtained by inte-

grating the inner product of the half space Green's tensor for Hz and the 

.?_~att~!j~~\l~ul'fent, the total electric field multiplied by the excessive 

conductivity of the inhomogeneity. 

The numerical solutions obtained for the two-dimensional conductor 

with the same cross sectional geometry. r~odel III, have also been plotted 

in the same Figures. Since the solutions we have generated are the total 

half space responses including the scattered fields by the conductor, 

the plotted quantities have been obtained by subtracting the analytically 
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computed half space responses froM the solutions originally obtained. 

The solutions in the vicinity of source have not been plotted simply 

because vie know that the contri but; ons from the range beyond the cut-, 

off ky are too significant to be truncated. It has been found that the 

convergence of harmonic solutions in ky is very slow in the vicinity 

of source, especially for the imaginary part of Hz' In the regions of 

convergence however, the two solutions share the same zero crossings 

on top of the conductor, both for the real and the imaginary parts of the 

anomalous H. After the zero crossings the two anomalies differ consider­z 
ably in their assymptotic behaviour at increasing distance from the con-

ductors. As can be intuitively expected, the anomaly due to a two-

dimensional conductor diminishes much slower than one due to a three-

dimensional conductor. 

Another numerical check has been made by comparing measurements 

made on one of Frischknecht's tank models and the solution obtained here 

for a two-dimensional body. In this model a transmitter-receiver pair 

with a separation of 2000 meters is moved on the surface across the 

center of the conductor. The scaled two-dimensional numerical model, 

Model IV, consists of a half space of 13.7 ohm-meter resistivity, in 

which a 1.82 ohm-meter conductor of size 500X500 square meters is buried. 

The scaled length of the tank model is 3000 meters in the strike direc-

tion. The depth from the surface to the top of the conductor is 200 

meters. The frequency used is .15 Hz. In the presence of a vertical 

magnetic dipole, the normalized vertical magnetic fields, H IHP, measured z z 
by the receiver versus the array center have been plotted in Figure 16. 

Except for the imaginary part in the region above the conductor, the 

two-dimensional body has a response of greater magnitude than the three-
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dimensional one. The asymmetry in the numerical solution across the 

center of the conductor is less than 1 percent with respect to the 

total field. Considering the limitations inherently carried in the 

numerical solution, the quality of the solution may well be accepta­

ble as far as the reciprocity principle is concerned. An additional 

reciprocity check has been made between H ~ Figure 17, due to a x 
vertical magnetic dipole and Hz. Figure 18, due to a horizontal mag-

netic dipole on the same model. The vertical magnetic fields plotted 

in Figure 18 are the values at 2000 meters to the left of the trans-

mitting horizontal magnetic dipole. Again, we have reasonably good 

reciprocity check between the field components. 

The next model shown here is a half space composed of two quarter 

spaces, Model V; on the left of the contact the resistivity is 100 ohm-

meters, and on the right, 10 ohm-meters 0 The array consists of a 

vertical magnetic dipole of unit moment and a receiver 200 meters to the 

right, moved along the earth surface in the direction perpendicular to 

the contact. The frequency used is 100 Hz. The magnitudes and the 

phases of Ey ' Hx' and Hz versus array centers have been plotted in 

Figure 19, Figure 20, and Figure 21, respectively. On the resistive 

side far away from the contact, the current flows circularly with its 

phase lagging approximately 90 degrees behind the transmitting magnetic 

moment. As the array approaches to the contact from the resistive side, 

the conductive quarter space starts drawing source current and thus the 

field decreases. This channeling of the current in the conductive 

region across the contact reache~ its maximum as the array straddles 

the contact. The horizontal magnetic field H increases as expected an x 
order of magnitude from one side to the other. Approximately 25 degrees 
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of phase retardations can be ohs~rvpd for all the field components as 

increasingly more waves propagate through conductive medium with their 

phases lagging behind. Since the real part of H is strongly dominated z 
by the primary dipolar field. the observed phase change in H across z 
the contact indicates a rapid variation in the imaginary part of H . z 
The relative lateral position of the channeling current with respect 

to the array configuration is primarily responsible for the shape of 

the observed variations in each component. 

For all the field components there is little effect of the contact 

once the transmitter or receiver is 200 meters from it. With increasing 

transmitter~receiver separation. it is anticipated that the shape of 

anomaly for each component will become broader and smaller. The long 

tick marks on both ordinates of Hx and Hz are half space analytic solu­

tions to which the numerical solutions converge. 
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v. Conclusion 

A finite element method has been developed for determining the 

electromagnetic scattering by an arbitrary two-dimensional inhomogeneity 

in the presence of a magnetic dipole. Although we have considered only 

a magnetic dipole, the program developed herein can be used for any 

finite source, provided that the corresponding one-dimensional analytic 

solution is known. 

The quality of the solution for a horizontal magnetic dipole has been 

shown to be relatively poor compared to that of the vertical magnetic di­

pole. difficulty stems primarily from the effect of charges accumu­

lated at the air-te-earth interface. We have used a soft or gradational 

boundary as a substitute for the step like conductivity discontinuity, 

expecting that the distribution of charges would be continuous. At the 

air-to-earth interface however. the conductivity contrast is so severe 

that the normal component of electric fields is completely polarized 

in the opposite direction across the interface due to the surface 

charges. Consequently. there appears to be a physical limit beyond 

which a discretized numerical scheme. such as the one develeoped here. 

can not cope. 

Another important factor concerning the quality of the solution. 

especially for a horizontal magnetic dipole, is the degree of accuracy 

of the calculated source vector including the boundary values. It has 

been shown that a remarkable improvement in the solution quality can 

be achieved by using accurately evaluated source vector due to the pri­

mary field (refer to the brief analysis and conclusions made in section 

B. part IV). The fact that we can evaluate the source term accurately 

and use it in the finite element method is one of the major advantages 
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over the fi nite difference method, such as the one developed by Stoyer, 

(1974)0 The trouble with the finite difference solution is that, with­

out having an accurate source term implemented in the system equation, 

the phase of the calculated field or the ratio of one component to the 

other contained in the solution could be reasonably good regardless 

of the quality of the actual magnitudes of the calculated solutiono 

Therefore, the validity of the solution must be verified by checking on 

the calculated field quantity itselfo 

The internal consistency of the algorithm has been demonstrated on 

the uniform half space model both for the vertical and the horizontal 

magnetic dipole solutiono Numerical checks have been made against the 

solutions obtained for three-dimensional modelso Except for the differ­

ences in shape, which we believe are due to the dimensionality of the 

conductive body used, it has been found that the solutions are basi­

cally similar. The two-dimensional anomaly~ however~ generally shows 

a slower assymptotic behavior with larger magnitude than the three­

dimensional oneo The qualitative interpretations of the electromagnetic 

responses of a certain class of three-dimensional models, at least those 

illustrated for the comparisons in this thesis, may effectively be accom­

plished using much inexpensive two-dimensional model resultso 

For the inverse Fourier transformation, we have used 15 harmonic 

solutions for all the models studied hereo However, we may need more 

harmonic solutions if: 1) the model under study is such that the 

field is expected to behave rather rapidly in the direction parallel 

to the strike, a situation, for example, encountered by a model which 

has a surface inhomogeneity of high conductivity contrast, and 2) an 

accurate solution is desired in the vicinity of sourceo 
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The primary purpose of the study presented here has been to inves­

tigate the electromagnetic responses of common geologic structures with 

inhomogeneities of large scale, such as contacts, semi-infinite surface 

or buried layers, and infinite dykes. The typical applications of the 

method are the model study of the e~ctromagnetic sounding at the edge 

of a valley or the study of the electromagnetic coupling effect due to 

a grounded electric dipole necessary for the interpretation of IP:field 

data. 

In the future, provided that the numerical as well as the physical 

difficulty of the air-to-earth interface is solved, the direct magnetic 

field solution will not only eliminate the unnecessary modif"ications 

made for the electric field solution, but undoubtedly improve the quality 

of the solution. 
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APPENDIX I 

Reduction of Variation Integral to Differential Equation 

a) Magnetic T~ 

Rewriting equation (1-8) 

and using the vector identity 

V·(AxB) = ].VXA - 1i'\lXB) 

the variation of I(R) with respect to R becomes 

bI(R) =Jy;U(H- ~A.VX\7XM+Ms)'~M o\v-

-+ j V ~A. If· ( V X K x t'R) c( V' 

=. o. 

(1) 

(2 ) 

(3) 

By the divergence theorem and Maxwell's equations, the second integral 

in (3) can be written as 

- ( ~ E:: x F'H' M:.c(IA.) ) S .Jw 
(4) 

-where n is a unit vector outward normal to the surface S. 

The surface integral (4) would vanish at every internal boundary 

because n alternates its sign between adjacent cells. The only non-

zero contribution comes from the surface integral along the external 

boundary, We force this non-zero term to vanish by employing one of 

the following boundary conditions: 

(1) tangential magnetic fields are prescribed on the surface, 

so that 
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(2) tangential electric fields are set equal to zero 

1l x \ :::: o. 
s 

With either one of the boundary conditions satisfied, the volume 

integral must vanish. But since 6H is arbitrary in the volume the 

coefficient has to be zero everywhere. Hence 

- \ -H ~ ~ \f X v X Ii = - t"is • (5) 

b) Electric type 

The variational integral in this case is 

(6) 

Taking variations of I(E) with respect to E and following the procedure 

similar to the magnetic type case, we obtain 

(
- ( I 1:1..-

b I E::) = ) v W7- \ R E - V x V x 

T J s fA.) H x bE;. '-Yl cA C"­

(7) 
.::::. o. 

The boundary condition, by which the surface integral vanishes, can be 

met by either (1) prescribing tangential electric fields on the sirface. 

or, (2) forcing zero tangential magnetic fields on the surface, 

When one of these boundary conditions is satisfied, the electric 

field in the volume becomes subject to the differential equation 

(8) 
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APPENDIX II 

Soft Boundary 

a) Modification of conductivity 

The name llsoft boundaryll has been given to the artificial smoothing 

of the conductivity across an internal boundary, The continuous con-

ductivity change permits a continuously changing normal component of 

electric fields across the boundary. 

An exponential transition of conductivity change is forced to occur 

within the strip bounded by two dotted lines shown by Figure 11-1. 

The composite conductivitYG(x) between x ::;: xl and x = x2 is given 

by 

~( x) (1 ) 

where the arbitrary constant ~ is a damping factor characterizing how 

rapidly the transition takes place. Similarly, the composite conduc-

tivity ~(z), Figure I l-(b), between Z = z2 and Z = z3 is given by 

(2 ) 

If (), ::;: 0, the free space conductivity, we cannot use equation (2) 

because ~(z) has to be zero at z = z2' The composite conductivity6(z) 

in this case is defined by 

crt~)::::. G"L - G-2. ~-O<Or-.;}2.) - \)y~ t<. ""(~-.}-3\ (3) 

in which ~(z) becomes effectively zero at z = z2 regardless of the 

coefficient of the last term provided that the exponent ~(z-z3) is a 

large negative number. 

The two-dimensional composite conductivity ~(x.z) in the region 

Xl ~ x ~x2' z2~z;:; z3' can be easily formulated by extending the concept 
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used for6(x) and ~(z). The one-dimensional composite conductivities 

(S""A (X)) <Sf> (X)) and (leVi,) , Figure U-l-(cL are first derived in 

places of CS-;z.. , ~ , and ~b ,respectively. They are 

tSAl x) CS-z. ~ 

<:) ..... - ~ -o<..(X-Xl) G"z. - \S'i e.. 0<.( x- x-z..) J - ~e,. - (4) 

cre(x) - ~- ':i - <Sg: e.-"z(~-XI)_ e o«(x-X~) 
C) 

I 2.- z- ) 
(5) 

<Y'c (x) :;;::; cs-; 
b 

~- 67 _oZ(x-x\)_ 
--€:. 

Z-

~ - ~ e t>( ( x - X 4) 
z.. • (6) 

These composite conductivities are again used for the composition of 

the two-dimensional conductivity ~(x,z) eventually substituting for 

the original cs;,. Hence, we obtain 

a(x.)~) = ~B(x) _ ~tX)~~~ 

for ~4(X) ~ 0 ,and 

<r(x/;}) = ()~(x) - ~(x) e.-o«.J,-Ja-)_ C8(x)~~ e.."z(;}--.J...3; (8) 

for GA ( >() =- 0 . 

The composite conductivity for a three-dimensional block can also 

be formulated by extending the concept one step further. 

b) Variational inteqral with composite conductivity 

From an inspection of equations (111-13), (III-14), and (111-15), 

we find that the only integration associated with the conductivity is 

(9) 

There is one basic integration required for the evaluation of integral 

(9), which is 
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T 
\ e. ±O(tt.'1'l ,;{t 
)0 ) 

(10) 

Since the solution for n = 0 is given by 

the solutions for n = 1, 2 may be found successively using 

1::. ~ e.,±o<tt/'l\.(T =+ *)\ e.±",tt'Yl-\ Pl:t. 
<> 



APPENDIX II I 

The Harmonic Electromagnetic Field due to a ~1~netic Dipole 

The magnetic dipole located on or above an N-layered half-space, 

Figure 1II-1. generates a magnetic Hertz potential TI*satisfying 

(1) 

The particular solution of equation (1) can be found by initially 

Fourier transforming both sides of the equation. The solution in wave 

number domain is given by 

~ p ~s 
TIiI" (k,,) f{.!:!)~;}) =. -1t~~~t~~~;-+-k~~:A.-~Ii-';:£ (2 ) 

Inversely Fourier transforming equation (2) in kz and kx successively 

(Erdelyi. 1954). we obtain 

(3) , 

where 

u - (~)(4+ k;-R.'.\.) Yz-) 

'1 "'" (~,(- ~~) Yz- ) 

" ~ t(X-x.')4-+< ~I t} 1:--

The electromagnetic field vectors in ky can be found using 

(kJ ) =: -Jwfl \l x lt~(~) ) (4) 

H(~j) = ~4..1T*(k~) + V(\T·it*(~»)) (5) 

with -:~ and ;;a. in (4) and (5) substituted by J~.j and - k.~ 9 

respectively. 
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In the presence of an N-layered half-space, the vector potential 

is written as 

(6 ) 

where 11'*''>( rt..:::i) is the secondary Hertz potential, and it satisfies 

the homogeneous equation 

In view of the primary solution (3), If*$(~) has a solution 

of the form 

in the ;th layer. The signs attached to A indicate whether the wave 

is traveling down (+) or up (-). 

a) Vertical magnetic dipole 

(8) 

The Hertz potential above and below the earth surface can be written 

as, after dropping (ky) and 11*", 

(9 ) 

if L = T.} ;~ r(At e::- u
.:,}-+ A"Z (!. 1Ai:}) ~ u&}!<A>~dt,,(x~)(/) .(k,,) >;:. ~ >~ .;}';;-\ J 

o 

(10) 

(11 ) 

where the coefficients Aj • j = OwN. are functions of kx for fixed kyo 

The electromagnetic fields can be found by equations (4) and (5). 

The continuities of the tangential components of electric and magnetic 

fields at the ith interface provide us the relationship between A" and 
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Ai -1. It can be shown that for every wave number kx' we have 

-r i.-\' ( A ~_\ A ~_\ ) \ - T-- ( A+' A7)\ (12 ) _L. l- t. } 

where 

T- r-/:, LA' 

I 1-"- ~. 0 
_I- -~ t.. e. 1- .... 

. 
0 

e...lA,:,~~ 

) 

and 

Tc.-I - -lA..::-\ LA.,::-\ -e.-VI,;..) 0 

<:) e.. \A, C-I 

Equation (12) gives a recursion formula relating the coefficients in 

one layer to those in the next layer by 

+ 
( AH 

where 

A-: ) 
t. } 

(lA':;_1 t lA..c) • 

e, UA~-\ - U,::),:},:: 

(LAC-l - LA~) • 

-(!,{t:-\+ LA.~»)-;:. 
e.. 

(13 ) 

(U2'-\ -tAc) • 
e.. <.. l-(L:_\ + u,,;) }-~ 

(lAC--. + tA~) • 

~ -("I~I-!A,::)",}''; 

At the air-to-earth interface, the continuity conditions give 

similar equation to (12) as 

(14 ) 
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( + - T + Since Al A, ) can be related to AN by recursively operating equation 

(13)~ the last equation becomes 

N 

A- 'u \)' = ~~ (\ -+.-.)T t I" r IT 
o \ 0 2.lr \/\/) - l .J "'" 2. J ( "+ 0)', . AN / (15) 

from which AO- and AN+ can be computed, + The coefficients A. and A.-~ 
J J 

j= l~N-l~ can be found using equation (12), 

b) Horizontal magnetic dipole 

The secondary Hertz potent'ial 1t*sCk.j) in this case has to be sup­

ported by an additional z-directed potential due to the asymmetry created 

by the orientation of dipole moment If/ith respect to the half space geom·~ 

etry. 

The total potential in the regions of interest can be written in 

integral forms as 

(16 ) 

) 

VVI x [( + - V( • ~ - 1.4' } ) VI J..-/ / L 11';. ::;:, i:.x. ,2,1\ Bt:. e L- +B,: e." e 0 u>sltx(!(~~X) c(l<{X (17) 
v 

+ I~ .:; )~(At <-L! A~ e\A~l) e l)(··{)utkx) a-c~ a-~ +1) 

" 

(18 ) 

The selection of sin k (X-Xl) for the z-directed potential has been x 

based on the symmetry condition of the electromagnetic field in x. 
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r1atehi ng boundary conditi ons at the .th interface obtain 1 VJe 

-+ -+ T 4- A~ - )1 T C-I • (Pi:-\ E'> c:-\ Al.--\ A C.-I) =- 'I L: • \ .B L B~ Ai.:. ) 

vvhere 

k:<- k~ -Vl·}-' 0 0 
~ =. b 0 

e. L- .~ 0 
\.. ... 

-~x -kx -u.c. L.t c. 0 ~ (A.:.1;.;: 0 0 

0 0 0 0 e-0\,;'}.; 0 

-L(,;: tA, 
l-

0 0 0 0 0 e.. VI CJ-':' 

and 

1~1 ::::. !><d:i' ~;:~ 0 0 ~-[)';'-i.}':' 0 0 0 

-"z.x -1'<1\ -l.<;;; \;( ~-I 0 e, \A ~-\ 1Y,; 0 0 

0 0 0 0 e::lJ,~-i ~.:. 0 

- l4.;-\ LtV-I 0 0 0 0 0 
lA ';1 1r ' e, v ... 

The recursion formula can be found from (19) as 

( + - T - \' t 'T T 
B GI B C-I A C.-I A 0-\ ) = ~ 2: • ( t),:- B;: A I:: At)) 

where 

- z.w.::\ lA,;_\ (I\~L{, +k~L-l')· \ k.tu.c-;- kc~ u,::)· ,,~-\ l,; t- o 
e. (Uc-; -\At:):;Y':' e. (lA.;.-\+Li.;):;Y.;.. 

( '- "-,k,:l~N-~'::-'\ IA~) • l kZUriTkt:iul..)' 0 
e..-(\Av;-tl-{~) ;;'C e. -(1.4';-\ --w.:Y;k 

-(t.x tkt-kt:;) . -~x(~.;"'-\'l;;~) • ~.;:; (lAC_(tVl.::). 

e. (llc,-lAc).},:. e. (Ut-l t \A c>:;Y-.:;. e. (tAt; -!A~);}": 

Ie)!. (~.;":..kL..?i)· ~x(k.~"'-k~) • ~.:i(V1':i -Vlt:)-
~ -'U':-; t-lA~).}': e.-(v\;:-\-lA.:.)}.;. e.,-(l'{i'-ftVl ':) },; 

(19) 

) 

(20) 

b 

0 

k~ (U,""I -u,:-)· 

e (U,,<"oJ~, I 
~ etc u ~ .. (t VIc:). 

e:-lU.:-;-1Ac') Jr..: 

At z = zl' the matching of 

relationship to equation (19). 

boundary conditions gives a similar 

After the eoeffi c i ents B1 +, B1 ,A, + 

+ -e' ~teal +~ D r I a ~v UN by recursively substitutinq equation 
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(20). the following set of equations are finally reached. 

R4. -::::. _ IN\)I. R.~ 
N 

Sf 0 B- + ll"l ;rl:<-~;J' D ., :::L1\ u:;; f\\ 

-itx u,., A;; \«)( 0 
-~ 

0 0 At (21) 

0 

The four unknowns BO + • BN • and AN can be easily found from 

equation (21). The unknowns in each layer can be computed by recursively 

operating equation (19) backward, 

c) ComputatioQ of the electric field 

With all the necessary coefficients found, the computation of elec-

tric field becomes trivial. Since the primary fie"ld can be derived 

analytically in terms of KO and K, , let us find out what is the secondary 

electric field in the ith layer in the presence of a horizontal magnetic 

dipole, 

Rewriting equation (4) for the secondary part in the ;th layer 

:; ';;; ~ 

Exc =- --J~ ~j lTJ-t ) (22) 

.$ , \"2> s t> s) (23) 
.E:,.:jc = - J""'r t>~ l1xc - "$X 11 2ri: ) 

S I:> s (24) 
kJ-t :::. J~wr t>j If x,:::. ) 

!> where 1Tx~ is the total x-component Hertz potential subtracted by the 

primary potential given by equation (3), The z-component total potential 

itself is the secondary potential because there is no primary potential 

in that direction. Hence, from equation (17) 
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substituting (25) and (26) into (22). (23), and (24), we obtain 

( 27) 

(28) 

f:;-/:'i:- -=:,-wAAklA~2:.("' (j:;,t~~IA'::3--+ ~7~-tlA;;'}- ~-Le,-\A",}\}. (29) 
d / J 21\}. t- (.. t.{o 

t> 

e.."lA" '}t C. <> 6 k", ( x. ~ )( ') ol k x. , 

The integration in k has been carried out numerically up to a certain x 
number of periods until the desired convergence criterion would be met. 

The subtractive primary term e..~tAo}-/ U" in (25). which otherwise 

could be evaluated analytically. actually accelerates rate of con-

vergence of numerical integration. 
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