Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A Predictive Model to Identify Patients With Fecal Incontinence Based on High-Definition Anorectal Manometry

Abstract

Background & aims

Three-dimensional high-definition anorectal manometry (3D-HDAM) is used to assess anal sphincter function; it determines profiles of regional pressure distribution along the length and circumference of the anal canal. There is no consensus, however, on the best way to analyze data from 3D-HDAM to distinguish healthy individuals from persons with sphincter dysfunction. We developed a computer analysis system to analyze 3D-HDAM data and to aid in the diagnosis and assessment of patients with fecal incontinence (FI).

Methods

In a prospective study, we performed 3D-HDAM analysis of 24 asymptomatic healthy subjects (control subjects; all women; mean age, 39 ± 10 years) and 24 patients with symptoms of FI (all women; mean age, 58 ± 13 years). Patients completed a standardized questionnaire (FI severity index) to score the severity of FI symptoms. We developed and evaluated a robust prediction model to distinguish patients with FI from control subjects using linear discriminant, quadratic discriminant, and logistic regression analyses. In addition to collecting pressure information from the HDAM data, we assessed regional features based on shape characteristics and the anal sphincter pressure symmetry index.

Results

The combination of pressure values, anal sphincter area, and reflective symmetry values was identified in patients with FI versus control subjects with an area under the curve value of 1.0. In logistic regression analyses using different predictors, the model identified patients with FI with an area under the curve value of 0.96 (interquartile range, 0.22). In discriminant analysis, results were classified with a minimum error of 0.02, calculated using 10-fold cross-validation; different combinations of predictors produced median classification errors of 0.16 in linear discriminant analysis (interquartile range, 0.25) and 0.08 in quadratic discriminant analysis (interquartile range, 0.25).

Conclusions

We developed and validated a novel prediction model to analyze 3D-HDAM data. This system can accurately distinguish patients with FI from control subjects.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View