Skip to main content
eScholarship
Open Access Publications from the University of California

Lithium substituted poly(amic acid) as a water-soluble anode binder for high-temperature pre-lithiation

Abstract

Multifunctional binders hold great promise in advanced electrode designs for both fundamental research and practical utilization of lithium-ion batteries (LIBs). The reactions between Si/SiOx-dominated anodes with lithium are expected to be exothermic in principle, while the thermal tolerance along with the volume change makes high-temperature binders attractive for large scale roll-to-roll manufacturing. For instance, if a high temperature binder is also water soluble, it can be compatible with the current graphite-based anode manufacturing process. In this work, we present a water-soluble poly(amic acid)-based binder, which can withstand high temperature for industrial pre-lithiation process and effectively hold active materials together during repeated charge and discharge cycles. This lithium substituted poly(amic acid) binder (denoted as Li-Pa) can serve as a drop-in replacement for environmentally friendly electrode fabrication in large scale by providing aqueous solubility, exceptional thermal stability and mechanical flexibility.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View