Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Parallel Approaches to the String Matching Problem on the GPU

Abstract

We design a family of parallel algorithms and GPU implementations for the exact string matching problem, based on Rabin-Karp (RK) randomized string matching. We describe and analyze three primary parallel approaches to binary string matching: cooperative (CRK), divide-and-conquer (DRK), and a novel hybrid of both (HRK). The CRK is most effective for large patterns (>8K characters), while the DRK approach is superior for shorter patterns.We then generalize the DRK to support any alphabet size without loss of performance. Our DRK method achieves up to a 64 GB/s processing rate on 8-character patterns from an 8-bit alphabet on an NVIDIA Tesla K40c GPU.We next demonstrate a novel parallel two-stage matching method (DRK-2S), which first skims the text for a smaller subset of the pattern and then verifies all potential matches in parallel.Our DRK-2S method is superior for pattern sizes up to 64k compared to the fastest CPU-based string matching implementations. With an 8-bit alphabet and up to 1k-character patterns, we get a geometric mean speedup of 4.81x against the best CPU methods, and can achieve a processing rate of at least 53 GB/s.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View