Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology

Abstract

We optimized the performance of quantum-confined Stark effect (QCSE)-based voltage nanosensors. A high-throughput approach for single-particle QCSE characterization was developed and utilized to screen a library of such nanosensors. Type-II ZnSe/CdS-seeded nanorods were found to have the best performance among the different nanosensors evaluated in this work. The degree of correlation between intensity changes and spectral changes of the exciton's emission under an applied field was characterized. An upper limit for the temporal response of individual ZnSe/CdS nanorods to voltage modulation was characterized by high-throughput, high temporal resolution intensity measurements using a novel photon-counting camera. The measured 3.5 μs response time is limited by the voltage modulation electronics and represents ∼30 times higher bandwidth than needed for recording an action potential in a neuron.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View