Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Adaptive learning algorithms to optimize mobile applications for behavioral health: guidelines for design decisions.

Abstract

Objective

Providing behavioral health interventions via smartphones allows these interventions to be adapted to the changing behavior, preferences, and needs of individuals. This can be achieved through reinforcement learning (RL), a sub-area of machine learning. However, many challenges could affect the effectiveness of these algorithms in the real world. We provide guidelines for decision-making.

Materials and methods

Using thematic analysis, we describe challenges, considerations, and solutions for algorithm design decisions in a collaboration between health services researchers, clinicians, and data scientists. We use the design process of an RL algorithm for a mobile health study "DIAMANTE" for increasing physical activity in underserved patients with diabetes and depression. Over the 1.5-year project, we kept track of the research process using collaborative cloud Google Documents, Whatsapp messenger, and video teleconferencing. We discussed, categorized, and coded critical challenges. We grouped challenges to create thematic topic process domains.

Results

Nine challenges emerged, which we divided into 3 major themes: 1. Choosing the model for decision-making, including appropriate contextual and reward variables; 2. Data handling/collection, such as how to deal with missing or incorrect data in real-time; 3. Weighing the algorithm performance vs effectiveness/implementation in real-world settings.

Conclusion

The creation of effective behavioral health interventions does not depend only on final algorithm performance. Many decisions in the real world are necessary to formulate the design of problem parameters to which an algorithm is applied. Researchers must document and evaulate these considerations and decisions before and during the intervention period, to increase transparency, accountability, and reproducibility.

Trial registration

clinicaltrials.gov, NCT03490253.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item