- Main
Binaries in the Kuiper Belt
Abstract
Binaries have played a crucial role many times in the history of modern astronomy and are doing so again in the rapidly evolving exploration of the Kuiper Belt. The large fraction of transneptunian objects that are binary or multiple, 48 such systems are now known, has been an unanticipated windfall. Separations and relative magnitudes measured in discovery images give important information on the statistical properties of the binary population that can be related to competing models of binary formation. Orbits, derived for 13 systems, provide a determination of the system mass. Masses can be used to derive densities and albedos when an independent size measurement is available. Angular momenta and relative sizes of the majority of binaries are consistent with formation by dynamical capture. The small satellites of the largest transneptunian objects, in contrast, are more likely formed from collisions. Correlations of the fraction of binaries with different dynamical populations or with other physical variables have the potential to constrain models of the origin and evolution of the transneptunian population as a whole. Other means of studying binaries have only begun to be exploited, including lightcurve, color, and spectral data. Because of the several channels for obtaining unique physical information, it is already clear that binaries will emerge as one of the most useful tools for unraveling the many complexities of transneptunian space.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-