- Main
Intracellular Delivery: Redox‐Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snap‐Tops Enhances Efficacy Against Pneumonic Tularemia in Mice (Small 27/2016)
Abstract
The drug trapping and intracellular release mechanism of redox-responsive disulfide snap-top mesoporous silica nanoparticles (MSN-SS-MXF) is depicted by J. I. Zink, M. A. Horwitz and co-workers on page 3690. Mesoporous silica nanoparticles with antibiotic (cyan) trapped within their pores by disulfide snap-tops are avidly ingested by macrophages. The intracellular redox potential reduces the disulfide (yellow) in the stalk (green/blue), releases the caps (orange) and frees drug to kill Francisella tularensis (green). Artwork by Bastian Ruehle.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-