Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Machine Learning Adds to Clinical and CAC Assessments in Predicting 10-Year CHD and CVD Deaths

Abstract

Objectives

The aim of this study was to evaluate whether machine learning (ML) of noncontrast computed tomographic (CT) and clinical variables improves the prediction of atherosclerotic cardiovascular disease (ASCVD) and coronary heart disease (CHD) deaths compared with coronary artery calcium (CAC) Agatston scoring and clinical data.

Background

The CAC score provides a measure of the global burden of coronary atherosclerosis, and its long-term prognostic utility has been consistently shown to have incremental value over clinical risk assessment. However, current approaches fail to integrate all available CT and clinical variables for comprehensive risk assessment.

Methods

The study included data from 66,636 asymptomatic subjects (mean age 54 ± 11 years, 67% men) without established ASCVD undergoing CAC scanning and followed for cardiovascular disease (CVD) and CHD deaths at 10 years. Clinical risk assessment incorporated the ASCVD risk score. For ML, an ensemble boosting approach was used to fit a predictive classifier for outcomes, followed by automated feature selection using information gain ratio. The model-building process incorporated all available clinical and CT data, including the CAC score; the number, volume, and density of CAC plaques; and extracoronary scores; comprising a total of 77 variables. The overall proposed model (ML all) was evaluated using a 10-fold cross-validation framework on the population data and area under the curve (AUC) as metrics. The prediction performance was also compared with 2 traditional scores (ASCVD risk and CAC score) and 2 additional models that were trained using all the clinical data (ML clinical) and CT variables (ML CT).

Results

The AUC by ML all (0.845) for predicting CVD death was superior compared with those obtained by ASCVD risk alone (0.821), CAC score alone (0.781), and ML CT alone (0.804) (p < 0.001 for all). Similarly, for predicting CHD death, AUC by ML all (0.860) was superior to the other analyses (0.835 for ASCVD risk, 0.816 for CAC, and 0.827 for ML CT; p < 0.001).

Conclusions

The comprehensive ML model was superior to ASCVD risk, CAC score, and an ML model fitted using CT variables alone in the prediction of both CVD and CHD death.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View