Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Correcting spurious resolution in defocused images

Published Web Location

https://doi.org/10.1117/12.698240Creative Commons 'BY' version 4.0 license
Abstract

Optical modeling suggests that levels of retinal defocus routinely caused by presbyopia should produce phase reversals (spurious resolution-SR) for spatial frequencies in the 2 cycles/letter range known to be critical for reading. Simulations show that such reversals can have a decisive impact on character legibility, and that correcting only this feature of defocused images (by re-reversing contrast sign errors created by defocus) can make unrecognizably blurred letters completely legible. This deblurring impact of SR correction is remarkably unaffected by the magnitude of defocus, as determined by blur-circle size. Both the deblurrring itself and its robustness can be understood from the effect that SR correction has on the defocused pointspread function, which changes from a broad flat cake to a sharply pointed cone. This SR-corrected pointspread acts like a delta function, preserving image shape during convolution regardless of blur-disk size. Curiously, such pointspread functions always contain a narrow annulus of negative light-intensity values whose radius equals the diameter of the blur circle. We show that these properties of SR-correction all stem from the mathematical nature of the Fourier transform of the sign of the optical transfer function, which also accounts for the inevitable low contrast of images pre-corrected for SR. © 2007 SPIE-IS&T.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View