Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Planar patterned stretchable electrode arrays based on flexible printed circuits

Abstract

For stretchable electronics to achieve broad industrial application, they must be reliable to manufacture and must perform robustly while undergoing large deformations. We present a new strategy for creating planar stretchable electronics and demonstrate one such device, a stretchable microelectrode array based on flex circuit technology. Stretchability is achieved through novel, rationally designed perforations that provide islands of low strain and continuous low-strain pathways for conductive traces. This approach enables the device to maintain constant electrical properties and planarity while undergoing applied strains up to 15%. Materials selection is not limited to polyimide composite devices and can potentially be implemented with either soft or hard substrates and can incorporate standard metals or new nano-engineered conductors. By using standard flex circuit technology, our planar microelectrode device achieved constant resistances for strains up to 20% with less than a 4% resistance offset over 120,000 cycles at 10% strain.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View