Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Modeling the Dynamics of Consumer Behavior from Massive Interaction Data


Recent technological innovations (e.g. e-commerce platforms, automated retail stores) have enabled dramatic changes in people's shopping experiences, as well as the accessibility to incredible volumes of consumer-product interaction data. As a result, machine learning (ML) systems can be widely developed to help people navigate relevant information and make decisions. Traditional ML systems have achieved great success on various well-defined problems such as speech recognition and facial recognition. Unlike these tasks where datasets and objectives are clearly benchmarked, modeling consumer behavior can be rather complicated; for example, consumer activities can be affected by real-time shopping contexts, collected interaction data can be noisy and biased, interests from multiple parties (both consumers and producers) can be involved in the predictive objectives.

The primary goal of this dissertation is to address the obstacles in modeling consumer activities through computational approaches, but with careful considerations from economic and societal perspectives. Intellectually, such models help us to understand the forces that guide consumer behavior. Methodologically, I build algorithms capable of processing massive interaction datasets by connecting well-developed ML techniques and well-established economic theories. Practically, my work has applications ranging from recommender systems, e-commerce and business intelligence.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View