Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Visible light OCT improves imaging through a highly scattering retinal pigment epithelial wall.

Published Web Location

https://doi.org/10.1364/ol.405398
Abstract

Here we provide a counter-example to the conventional wisdom in biomedical optics that longer wavelengths aid deeper imaging in tissue. Specifically, we investigate visible light optical coherence tomography of Bruch's membrane (BM) in the non-pathologic eyes of humans and two mouse strains. Surprisingly, we find that shorter visible wavelengths improve the visualization of BM in pigmented eyes, where it is located behind a highly scattering layer of melanosomes in the retinal pigment epithelium (RPE). Monte Carlo simulations of radiative transport suggest that, while absorption and scattering are higher at shorter wavelengths, detected multiply scattered light from the RPE is preferentially attenuated relative to detected backscattered light from the BM.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View