Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Development of MgZnO Thin Films for Optoelectronic Devices

Abstract

MgxZn1-xO thin film was developed to realize optoelectronic devices in the ultraviolet region. The alloy was grown without any phase separation and characterized with different methods, such as, photoluminescence, absorption, x-ray diffraction etc. to confirm the structural properties. P-type doping of MgxZn1-xO thin film was investigated. Antimony (Sb) and nitrogen (N) were used as the p-type dopant. It was found that incorporation of Sb degrades the optical quality of the film. On the other hand, N-doped p-type MgxZn1-xO thin film was demonstrated without any degradation of the optical quality. Temperature dependent photoluminescence of nitrogen doped p-type MgxZn1-xO nano crystalline thin films grown on c-plane sapphire substrate by rf plasma assisted molecular beam epitaxy were examined. P-type behavior was confirmed by both Hall effect and Seebeck measurements. However, structural defect related bound excitonic emission peak was distinguished in the low temperature photoluminescence spectra. Also, typical `S shape' behavior of energy position versus temperature is observed due to polarization induced internal field. Nitrogen related acceptor ionization energy was calculated to be ~180-200meV.

N-doped p-type Mg0.12Zn0.88O film was utilized in a p-n junction based random lasing device. A heterostructure device consisting of nitrogen-doped Mg0.12Zn0.88O and gallium-doped ZnO thin films was grown on c-plane sapphire substrate. Current-voltage and photocurrent characteristics indicated the formation of a p-n junction. Random lasing behavior with lasing modes centered at 356 nm was observed. A low threshold current of 6 mA was determined and an output power of 34 nW was measured at an injection current of 8 mA. The film consist of columnar structures with much air gaps, which assisted in light scattering to achieve necessary gain for random lasing. N-doped resistive Mg0.12Zn0.88O and ZnO films were also employed in metal-semiconductor-metal planar devices to realize random lasing in the ultraviolet region. Asymmetric Ni/Au and Ti/Au Schottky contacts and symmetric Ni/Au contacts were deposited on the thin film to form metal-semiconductor-metal laser devices. Current-voltage, photocurrent, and electroluminescence characterizations were performed. Evident random lasing with a threshold current of ~36 mA was demonstrated only from the Mg0.12Zn0.88O:N based asymmetric MSM device. Random lasing peaks were mostly distributed between 340-360 nm and an output power of 15 nW was measured at 43 mA injection current from the device. The electron affinity difference between the contact metal and N-doped resistive layer played an important role for electron and hole injection and subsequent stimulated random lasing.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View