Skip to main content
eScholarship
Open Access Publications from the University of California

Integrated Modeling and Design of Photoelectrochemical Water-Splitting Cells

  • Author(s): Berger, Alan
  • Advisor(s): Newman, John
  • et al.
Abstract

The photoelectrochemical production of fuels is an interesting research topic that aims to provide a low-cost method for storing solar energy. A one-dimensional model of a photoelectrochemical cell for solar water splitting has been developed, with applicability to both wired and wireless designs. The model of the light absorber handles electron and hole transport. The model of the electrolyte accounts for mass transport through regions of aqueous solution, including stagnant diffusion layers and bulk regions to address mixing due to bubbles, natural convection, or other sources. A polymer membrane may be present in the electrolyte.

The models of the light absorber and the electrolyte are integrated through the reactions taking place at the interface between them. Charge transfer from the semiconductor to the solution is handled using a kinetic model involving reactions between the species in both the light absorber and the electrolyte. A simplified model is also presented for use when concentration gradients in the electrolyte are negligible. The simplified model captures the effect of the electrolyte in the boundary conditions for the light-absorber.

Throughout, the model is validated against experimental data. At the outset, simulated output compares favorably with current-potential data for a hydrogen-evolving light absorber with varying degrees of simulated solar illumination. Later, the program is able to match current-potential data and bulk pH values for a membrane electrolysis cell with several electrolytes.

The model is first used to study the effect of changing the electrolyte on the performance of a photoelectrochemical cell. It is discovered that using supported dilute acids or buffered electrolytes in an attempt to work in near-neutral conditions is ineffective. Cells with neutral electrolytes cannot run at high current density due to transport limitations in the electrolyte and solubility limitations that are encountered due to electrodialysis.

Later, an absorber-in-membrane design for a photoelectrochemical cell is considered. Gas crossover is identified as a significant issue in these systems, and metrics are developed for evaluating system performance properly. Material targets are established. For instance, membranes with ten times the gas-blocking properties of currently available polymers (i.e., Nafion) are desired.

Main Content
Current View