Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Effects of mannan-oligosaccharide and Bacillus subtilis supplementation to preweaning Holstein dairy heifers on body weight gain, diarrhea, and shedding of fecal pathogens

Abstract

The objective of this clinical trial was to evaluate the effectiveness of probiotic, prebiotic, and synbiotic supplementation on average daily weight gain (ADG), duration of diarrhea, age at incidence of diarrhea, fecal shedding of Cryptosporidium oocysts, enteric pathogens, and the odds of pneumonia in preweaning dairy heifer calves on a commercial dairy. Feeding prebiotics and probiotics may improve health and production of calves. Hence, healthy Holstein heifer calves (n = 1,801) from a large California dairy were enrolled at 4 to 12 h of age and remained in this study until weaning at 60 d of age. Calves were block randomized to 1 of 4 treatments: (1) control, (2) yeast culture enriched with mannan-oligosaccharide (prebiotic), (3) Bacillus subtilis (probiotic), and (4) combination of both products (synbiotic), which were fed in milk twice daily from enrollment until weaning. Serum total protein at enrollment and body weight at 7, 42, and 56 d of age were measured. Fecal consistency was assessed daily for the entire preweaning period. A subgroup of 200 calves had fecal samples collected at 7, 14, 21, and 42 d for microbial culture and enumeration of Cryptosporidium oocysts by direct fluorescent antibody staining. Synbiotic-treated calves had 19 g increased ADG compared with control calves for overall ADG, from 7 to 56 d. From 42 to 56 d, prebiotic-treated calves had 85 g greater ADG and synbiotic-treated calves had 78 g greater ADG than control calves. There was no difference in duration of the first diarrhea episode, hazard of diarrhea, or odds of pneumonia per calf with treatment. Probiotic-treated calves had 100 times lower fecal shedding of Cryptosporidium oocysts at 14 d and prebiotic-treated calves had fewer Escherichia coli and pathogenic E. coli at 42 d compared with control calves. Although there were no effects on duration of diarrhea or pneumonia incidence, greater ADG in the late preweaning period may reflect treatment effects on enteric pathogens during the rearing process. The decreased shedding of Cryptosporidium should reduce infectious pressure, environmental contamination, and public health risks from Cryptosporidium. Our findings suggest ADG and potential health benefits for calves fed prebiotics, probiotics, and synbiotics and can help the dairy industry make informed decisions on the use of these products in dairy production.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View