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Abstract of the Dissertation

Wideband Cyclostationary Spectrum Sensing

and Modulation Classification

by

Eric Rebeiz

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Danijela Cabric, Chair

Wideband spectrum sensing is a key enabling functionality for Cognitive Radios

(CRs) since it detects unoccupied bands and allows throughput increase. Due to

prioritized spectrum sharing between CRs and primary owners of the spectrum,

it is not only sufficient to detect occupancy but also distinguish among different

users in order to manage interference. To realize this functionality in a practical

radio, there are several implementation challenges that we address in this thesis:

1) high computational complexity and energy cost for the detection and classifi-

cation of a broad range of communication signal types over a wideband spectrum,

and 2) impact of wideband receiver impairments including nonlinearities, carrier

and sampling offsets, and multipath.

The approach we take for joint sensing and classification is based on extract-

ing and processing cyclostationary features of modulated signals. Conventionally,

cyclostationary feature detectors are considered as robust detectors under noise

uncertainties. However, estimation of cyclic features under constrained sensing

time suffers from cyclic frequency offsets resulting from non-synchronous sam-

pling and local oscillator offsets. We propose a new frame-based cyclic feature
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estimator and optimize its frame length for a given carrier and sampling offset

distribution. For identifying signals with unknown parameters in an energy ef-

ficient way, we develop a hierarchical reduced complexity cyclostationary-based

classification algorithm by optimizing the search of cyclic features. The reduction

in complexity and energy cost comes from discretization of feature space based

on tolerable frequency offsets for the required classification accuracy. Next, we

study the impact of wideband receiver nonlinearities on feature detection and

show that performance loss depends on blockers strengths and modulation types.

Based on this result, we devise a compensation algorithm that incorporates mod-

ulation classification into intermodulation terms cancellation. Finally, we inves-

tigate how the signal sparsity in the cyclic domain can be utilized to reduce the

sampling rate requirements via a compressive sensing approach. As a result of

the additional sparsity in the cyclic domain, our results show that a compression

rate smaller than the conventional Landau rate can be achieved. In summary,

this thesis provides a comprehensive analysis of cyclostationarity based sensing

and classification under practical signal and radio conditions, and proposes a set

of algorithms for a robust performance and energy-efficient implementation.
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CHAPTER 1

Introduction

The Radio Frequency (RF) spectrum has become a scarce resource as a result

of higher data rate applications. Transitioning from voice-only to multimedia

communications is further amplified by the explosive growth of mobile devices as

a result of their decreasing cost. However, the RF spectrum resource is naturally

limited due to both physics and electromagnetics. Without addressing this issue,

the development of radio technologies become unsustainable.

In order to address the spectrum scarcity problem, innovative techniques must

be developed with the aim of providing new and more efficient ways of utilizing the

available spectrum. In several spectrum measurement campaigns [Yan05,SCZ10,

WRP09,MTM06], it has been shown that the current fixed allocation of spectrum

(such as that of the FCC, shown graphically in Fig. 1.1) is very inefficient as most

channels are underutilized. One such result, from measurements done in Chicago,

IL, is presented in Fig. 1.2. We observe that a significant portion of the spectrum

allocated to licensed services shows little to no usage over time, with all observed

channels being used < 25% of the time on average.

The Cognitive Radio (CR) concept was first proposed by Mitola [MM99],

whereby a radio can adapt and dynamically reconfigure itself based on its RF

environment. By making CRs flexible, the burden has been shifted from the

analog to the digital side. After a decade of research, CRs have attracted a lot of

interest have shown much promise. The main idea behind a CR is the exploitation

of existing spectrum holes, which are licensed frequency bands that are not used

by the Primary User (PU) at a given time and location. These spectrum holes are

1
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This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by the
FCC and NTIA. As such, it does not completely reflect all aspects, i.e., footnotes and recent changes
made to the Table of Frequency Allocations. Therefore, for complete information, users should consult the
Table to determine the current status of U.S. allocations.

Figure 1.1: The NTIA’s frequency allocation chart showing the fixed allocation
of the radio spectrum.

Figure 1.2: Average spectrum utilization taken over multiple locations [MTM06]
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opportunities for a secondary user (SU), and can be exploited either temporally,

spectrally, or spatially. Through CRs, the vision is to significantly improve the

spectrum utilization and potentially eliminate the false scarcity problem caused

by the static spectrum allocation.

1.1 Spectrum Sensing and Modulation Classification

Overview

As CRs should avoid interfering with legacy users (PUs), detecting their presence

before transmitting over any given channel. PU detection, which is also referred

to as spectrum sensing, needs to be performed reliably in the low SNR regimes

as a result of the near-far problem. With respect to different algorithmic tech-

niques for spectrum sensing [YA09], energy detectors (ED) are the simplest to

implement. In fact, ED [CMB04] estimate the energy in the subband of interest

to determine whether the signal of interest (SOI) is present or not by compar-

ing the estimated energy to a threshold. Although energy detectors require the

least amount of information about the signal to be detected, they suffer from the

noise uncertainty problem [TS08] when the noise floor cannot be estimated accu-

rately. On the other hand, cyclostationary-based detectors (CD) [Gar88,DG94]

rely on detection of hidden redundancies in the received signal. Cyclostationary

detectors do not suffer from the noise uncertainty problem as they are able to

asymptotically separate signal from noise by exploiting the noise stationarity, and

are therefore more robust than energy detectors in this regard.

Modulation classification is an intermediate step between signal detection

and demodulation, and helps in distinguishing PUs from other signals. Modu-

lation classification algorithms can be split into two categories. Maximum like-

lihood (ML) algorithms [WM00b, PK90, HP95, BW98] require the distribution

of the incoming samples, and are the optimal classifiers in the Bayesian sense

as they minimize the probability of false classification given a finite number of
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samples. However, the classification performance of ML algorithms degrades

when uncertainties in the received signal arise. Further, ML classifiers require

storing multi-dimensional probability distribution functions, and are therefore

complex to implement in terms of storage. On the other hand, feature-based

(FB) [SS00,NA98,YL98,SH92] algorithms use some statistical information about

the incoming signal instead of relying on the complete probability distribution

function. The algorithms of this class are less sensitive to uncertainties in the

received signal model, are less complex to implement, but are sub-optimal classi-

fiers. However, the loss in classification performance is usually offset by increasing

the number of samples needed for classification.

Designing a FB algorithm relies on defining features that can be used to dis-

tinguish the modulations that are considered. In essence, FB classifiers form a

higher dimensional space in which signals of different features can be separated

by a hyperplane. One example of FB classifiers is the famous cumulants classifier

such as the one presented in [SS00] where a hierarchical tree is presented to distin-

guish between one or more classes at each stage. Goodness of Fit (GoF) classifiers

on the other hand use the probability distribution function of a given feature of

the received samples as the feature used for classification. These kind of classi-

fiers rely on knowing the distribution of the received signal under the different

hypotheses, however they are more robust to modeling imperfections than ML

classifiers. Other FB classifiers are cyclostationary-based classifiers which rely on

the cyclic features of the signals for classification. The modulation type classifier

proposed in this thesis falls in this category. We refer to the case when the sym-

bol rate and carrier frequency of the signal to be classified are unknown as blind

modulation classification. This problem is of particular significance especially

with respect to the energy efficiency aspect of the modulation type classifier.

Blind modulation classifiers have numerous applications in current and fu-

ture wireless networks. From an electronic surveillance point of view, military

applications of blind modulation classifier include tracking the spectrum activ-
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ity of specific users (often interferes or jammers) and learning their modulation

classes. Blind modulation classification is therefore vital to electronic counter-

measures in such hostile environments. Additionally, with the recent deployment

of heterogeneous networks (HetNet) such as Long Term Evolution (LTE), mod-

ulation classification becomes part of interference management [LTY11,BLK12].

Multi-user detection is performed to support multiple overlapping transmissions

in time and (or) frequency. Knowledge of the modulation type by means of

modulation classification [DAB07] is necessary to demodulate the interfering

signal [Mos96]. However, this application assumes that the transmitted signals

are standard-compliant. In the future, as a result of spectrum under-utilization,

Cognitive Radios (CRs) [Ram09] will adaptively change their transmission pa-

rameters and modulation schemes in order to opportunistically access the unused

spectrum holes. In such future wireless applications, demodulation of these adap-

tively modulated signals would require blind modulation classification. For these

highly adaptive radios, information about transmit parameters cannot be as-

sumed. As a result, blind modulation classification approaches are of significant

research interest.

1.2 Motivation and Challenges for Wideband Processing

Sensing wideband channels has many benefits when it comes to opportunistic

spectrum allocation. First, wideband spectrum sensing would entail opportunis-

tically occupying unused spectrum from multiple bands, i.e. ISM band, TV band,

etc. Further, sensing over a wide range of frequencies increases the probability of

finding unused spectrum, and therefore increases the CR throughput.

Wideband spectrum sensing can either be performed using a narrowband or

wideband RF front-end. Narrowband RF front-ends allow the sensing radios to

tune to a single subband at a time. In such an approach, sensing would require

tuning of the local oscillator used for downconversion, and only a single channel
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can be sensed at a time. On the other hand, wideband RF font-ends downconvert

a wide range of frequencies to baseband, where the filtering is performed digitally.

In such receivers, sensing multiple subbands would entail changing the filtering

performed in DSP only while keeping the RF front-end fixed. For this reason,

we focus in this thesis on the deployment of such wideband RF front-ends as

sensing multiple subbands can be performed in a flexible manner through digital

processing.

Although adopting a wideband front-end is appealing for both spectrum sens-

ing and modulation classification, it unveils a whole new set of challenges that

have not yet been considered. First, wideband processing is accompanied with

wideband radio impairments such as frequency and sampling clock offsets and

LNA nonlinearities, all of which need to be analyzed. Further, from the com-

putational complexity point of view, an energy efficient method to detect and

classify signals in a wideband spectrum needs to be addressed. Further, the

energy consumption aspect is also problematic when it comes to the high-rate

power hungry ADC needed to digitize the entire wideband spectrum. The fol-

lowing subsections will give a brief overview of each of these challenges that will

be addressed in this thesis.

1.2.1 Wideband Spectrum Sensing Under Receiver Imperfections

Cyclostationary detectors require the knowledge of the signal’s carrier frequency

and symbol rate. The impact of radio imperfections such as IQ imbalance and

phase noise on cyclostationary detection have been studied in [OD11, One09].

However, typical wideband radio receivers also suffer from frequency offsets which

can occur as a result of local oscillator mismatch [DMR00], Doppler shifts, or

when the exact carrier frequency of the band of interest is not perfectly known.

These radio imperfections result in a frequency offset, often referred to as a

Cyclic Frequency Offset (CFO). It has been shown that the detection performance
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degrades with an increasing number of samples under a non-zero CFO [ZL10],

which presents a challenge to cyclostationary detection in low SNR regimes where

a large number of samples is needed to suppress the noise. However, none of the

above mentioned works have proposed a solution to overcome the performance

degradation due to these impairments.

In addition, Sampling Clock Offset (SCO) at the A/D sampling stage [FLP05]

is another impairment that needs to be considered. The effects of the SCO have

been shown to degrade the detection performance of cyclostationary detectors us-

ing the Spectral Correlation Function (SCF) as the test statistic [ZTD12,VRD10,

TCB07]. In [ZTD10a], a solution to the SCO is proposed in a pilot based OFDM

detection using the spectral correlation function as the test statistic, where the

phase offset from one frame to the next is estimated and compensated for in the

detection process. In [RC11a], a blind solution to the SCO problem has been

proposed, where the symbol rate of the incoming signal is estimated, and the

acquired samples are interpolated at the correct rate. The drawbacks of the re-

sampling technique solution are twofold: interpolation is power costly, and the

interpolation rate has to be modified for each signal of interest in the wideband

channel, which becomes a computationally inefficient solution.

1.2.2 Energy-Efficient Processor for Blind Modulation Classification

A survey of commonly used modulation classifiers is given in [DAB05] and in

the references within. The authors of [SS00] have proposed a hierarchical mod-

ulation classifier based on cumulants which are higher-order moments of the re-

ceived information symbols. This algorithm requires perfect timing synchroniza-

tion to extract information symbols, and is sensitive to the imperfect knowledge

of the Signal to Noise Ratio (SNR). On the other hand, some modulation classi-

fication algorithms operate on over-sampled signals. Among such classifiers are

cyclostationary-based modulation classifiers which classify signals based on the
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cyclostationary features [Gar91]. For linearly modulated signals, these cyclosta-

tionary features are a function of the signal’s symbol rate and carrier frequency.

However, the main challenge of blind modulation classification is the absence of

a priori information about the transmit parameters. As a result, the search for

the features used for modulation-type classification1 becomes very computation-

ally demanding. One approach to efficiently solve blind classification is to first

estimate signal parameters and then use cyclostationary based classifiers. As the

signal parameters are estimated using a finite number of samples, an estimation

error will be introduced. In order to minimize the total energy consumption of

the modulation classifier, knowing the maximum tolerable estimation errors while

meeting the required classification accuracy is necessary.

From the architectural point of view, although various non-blind classification

algorithms have been studied and even implemented in Digital Signal Process-

ing (DSP) [KKY03] and Software-Defined Radio (SDR) platforms [XSZ10], an

efficient silicon realization that classifies multi-carrier, spread spectrum, and lin-

early modulated signals was never realized before. In addition, these classifiers

require prior knowledge of the targeted signals, which make them unsuitable for

real-time blind classifiers. In order to achieve high energy efficiency, realization

of Application-Specific Integrated Circuits (ASICs) is desirable. However, due to

diversity of modulation classes and algorithms for their classification, a heuristic

ASIC design equipped with multiple dedicated modules − one for each signal

class − would result in large area and suboptimal energy consumption due to the

difficulty of hardware sharing.

1We use the term modulation type to refer to the modulation scheme of the signal (e.g.
QAM, PSK), and the term modulation level to refer to its modulation order (e.g. 4-QAM,
16-QAM).
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1.2.3 Wideband Spectrum Sensing under RF Nonlinearities

The effects of certain receiver front-end non-idealities such as phase noise [SVT09]

and I/Q imbalance [VRK01] as well as sampling clock offset on the performance of

signal detectors have been reported in a number of studies, e.g. [ZTD10b,VRD10].

These studies consider narrowband spectrum sensing, and their common assump-

tion is that the receiver operates in its linear region. However, depending on the

received power of the incoming signal, wideband sensing receivers might oper-

ate in a range where the RF front-end components such as Low Noise Ampli-

fier (LNA) exhibit a non-linear behavior. Therefore, spurious frequencies in the

form of harmonics, intermodulation (IM) and crossmodulation (XM) are gen-

erated [gha11, Raz10]. As a result, the presence of strong blockers, i.e. strong

signals outside the subband of interest, in the wideband spectrum produces distor-

tion terms that affect the detection performance in other subbands where weaker

signals may reside [Raz10,MKH10,KH09]. Under such scenarios, the detection

performance might be degraded, causing the CR network to either cause harm-

ful interference to the PU, or to miss the opportunity to transmit in a vacant

subband.

1.2.4 High-Rate High-Resolution ADC Design

Radios that operate over a channel bandwidth on the order of 500 MHz or more

require high sampling rate A/D converters with large dynamic range due to in-

band PU signals. However, high sampling rate A/D converters are hard to design

and consume high power. In order to reduce sampling rate requirements, it is

appealing to use a compressive sensing approach that samples wideband signals

below the Nyquist rate, given that the received wideband signal is sparse in a

given domain. Typical compressing sensing approaches such as the ones recently

proposed compressive sensing analog front-end architectures such as the Ana-

log to Information Converters (AIC) [LKD07], Modulated Wideband Converters
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(MWC) [ME10, MC11, MCD11], and other parallel mixed-signal architectures

such as [WP11,YH09, CZL09], all rely on the underutilization of the spectrum

and exploit the signal sparsity in its spectral domain. However, as will be shown

in this thesis, additional sparsity can be achieved in the cyclic domain. Fur-

ther, compressive sampling requires signal reconstruction that is realized in DSP,

and often involves solving complex optimizations such as Orthogonal Matching

Pursuit (OMP) and the ESPRIT algorithm [FC11] which make them difficult to

implement in VLSI.

1.3 Thesis Organization

In this thesis, we develop an analytical framework to characterize the performance

and limitations of wideband spectrum sensing and modulation classification. In

addition, we develop low-complexity DSP solutions that improve the performance

of wideband spectrum sensing algorithms under the imperfections considered in

this thesis. We discuss in Chapter 2 the design objectives of the sensing and

classification algorithms, give an overview of the techniques used for spectrum

sensing and modulation classification, and shed a light on the practical issues

that have not yet been considered.

In Chapter 3, we theoretically analyze the impact of receiver imperfections

such as carrier and sampling clock offset on the wideband cyclostationary-based

detection performance. We propose a new multi-frame detection statistic based

on the cyclic auto-correlation function. We study the optimum method for split-

ting of a given number of samples in order to yield the best average detection

performance under both sampling clock and cyclic frequency offsets. The con-

tributions of this work are three-fold. For the proposed detector, the optimum

frame length and number of frames is formulated as a two-dimensional optimiza-

tion problem and its performance is verified both theoretically and via numerical

simulations. The developed optimization framework can be used to verify when
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a gain in average detection performance can be obtained over the conventional

detector for a given distribution of cyclic frequency and sampling clock offsets.

Finally, the theoretical average probabilities of false alarm and detection of the

proposed detector for any frame length and number of frames are derived for a

given distribution of the cyclic frequency and sampling clock offsets.

In Chapter 4, we propose a blind modulation classification processor with

high functional diversity and energy/area efficiency. This chapter presents a sys-

tem level application to our findings in Chapter 3, and ties together the energy

efficiency of blind modulation classification processors to the impact of cyclic fre-

quency offsets on the classification accuracy. By jointly considering the algorithm

and architecture layers, we first select computationally efficient parameter estima-

tion and modulation classification algorithms. Then, we analyze the processing

strategy of the processor by studying the inter-block dependencies in order to

minimize the overall consumed energy.

The aim of Chapter 5 is to study the impact of receiver non-linearities on

different spectrum sensing techniques. The contributions of this chapter are

three-fold. We derive the theoretical false alarm and detection probabilities in

closed-form for both energy and cyclostationary detection for nonlinear front-

ends as a function of the sensing time, blocker and signal of interest power. We

theoretically show the effect of different modulation classes of the blockers on the

detection performance of both energy and cyclostationary detectors. Finally, we

propose a novel digital IMD compensation scheme and show under what condi-

tions detection performance gains can be achieved using the proposed method.

In Chapter 6, we consider a compressive sensing approach for wideband cyclo-

stationary wideband spectrum sensing and study the tradeoffs between sampling

rate reduction and increase in sensing time. The contributions of this chapter are

twofold. We develop a closed-form low-complexity SCF reconstruction from sub-

Nyquist samples which is applicable to any analog-front end compressive sensing

modulator. The given algorithm reconstructs only useful spectral correlation
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peaks used for detection, making it energy efficient and implementable in VLSI.

Finally, we quantify the bounds on the minimum achievable compression ratio

for a given spectral sparsity for both cyclostationary and energy detection, which

guarantee the uniqueness of the reconstruction.

We dedicate Chapter 7 to analyzing the impact of fading on both spectrum

sensing and modulation classification. In particular, we derive novel expressions

for the performance of energy detectors in composite channel fading models that

include both small-scale and large-scale fading. We also show the degradation in

the classification probability due to multipath fading, and propose algorithmic

solutions to improve the reliability of the proposed modulation classifier in the

presence of multipath channels. Finally, the thesis is concluded in Chapter 8.
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CHAPTER 2

System Model and Design Objectives

We consider a wideband channel consisting of multiple spectrally non-overlapping

signals. In the context of CR spectrum sensing, we focus on the processing of

a received wideband signal in a channel of bandwidth B centered at some car-

rier frequency. The approach and analysis considered here apply to any channel

bandwidth. Given the time and energy constraints on the sensing stage, we con-

sider a limited time window of length Tsense = NTTs during which the sensing

radio acquires a total number of NT incoming samples, where Ts is the sampling

period. Let t ∈ [0, Tsense] denote the time variable, and assume that the wide-

band channel could be occupied by K PU signals sk(t) ∀k ∈ [1, ..., K]. Under

hypothesisHk,0,Hk,1, the k
th PU is defined as being absent or active, respectively.

Therefore, the received wideband signal is given by

x(t) =
K∑
k=1

sk(t) , where 0 ≤ t ≤ Tsense and

sk(t) =


wk(t) under Hk,0∑∞

n=−∞ℜ{ak(nTk)pk(t− nTk)e
j2πfck t}+ wk(t), under Hk,1,

(2.1)

where ak(nT ) and pk(t) are the transmitted information symbols and the pulse

shaping filter of the kth transmitted signal respectively, and wk(t) is the AWGN

in the band occupied by the kth transmitter. We assume transmitted information

symbols with average power σ2
ak
, a pulse shape filter pk(t) of unit energy, and

we define the Signal to Noise Ratio by SNR = σ2
ak
/σ2

wk
where σ2

wk
is the noise

variance in the channel occupied by sk(t).
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The objective is to design an energy efficient receiver that detects the presence

of the signals in the wideband spectrum, and determines the modulation type of

the signals present. Spectrum sensing takes as an input the digitized IQ samples

of the wideband signal, and outputs a list of the signals occupying the wideband

channel. Once detected, each signal can be classified using a modulation clas-

sification algorithm. As a result, modulation classification cannot be performed

before detecting the presence of the signal to be classified.

2.1 Overview of Spectrum Sensing Techniques

We consider below a narrow-band signal x[n] which can be thought of as the

digitized samples of one of the subbands of the wideband channel.

Given a set of samples x[n], energy detection is the simplest signal detector

that can be implemented. The test statistic is computed by computing the aver-

age energy of the received signal x[n], and by comparing it to a decision threshold

γed. Given a finite number of samples N , the test statistic is computed as follows

Ted =
1

N

N−1∑
n=0

|x[n]|2 . (2.2)

When the samples x[·] are IQ samples of the entire wideband downconverted

channel, then channelization is needed before energy detection can be performed.

Channelization can be performed by passing the IQ samples through an FIR

filter, or by means of an FFT which channelizes the wideband spectrum into non-

overlapping frequency subbands. Once computed, the test statistic is compared

to a threshold γed which is a function of the noise power. When the noise power is

perfectly known at the receiver in each of the subbands, the sensing time N and

threshold γed are set to meet the desired false alarm and detection probabilities
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given by [QCP08]

N =

(
Q−1(Pfa)−Q−1(Pd)

SNR
−Q−1(Pfa)

)2

, (2.3)

γed =
(
Q−1(Pfa) ·

√
N +N

)
· σ2

w, (2.4)

where σ2
w is the noise variance in the given band of interest, and Q(·) is the tail

probability of a zero-mean unit-variance Gaussian random variable. However,

energy detection becomes challenging at low SNR levels where the noise level is

hard to quantify accurately. For this reason, energy detectors suffer from the

so-called SNR wall problem [TS08] below which reliable signal detection is not

possible.

Before defining how cyclostationary-based spectrum sensing is performed, we

given an overview of what cyclostationarity stands for. A random process r(t) is

said to be second-order cyclostationary if its second order moments satisfy two

conditions: its mean and autocorrelation are both periodic with the same period

T . In the context of modulated signals, T is a function of the symbol period

and the carrier frequency of the signal being processed. If we let E [r(t)] = µr(t)

and E [r(t)r(t+ τ)] = Rr(t, τ), then E [r(t+ T )] = µr(t) and Rr(t + T, τ) =

Rr(t, τ) iff r(t) is cyclostationary. Given a cyclostationary random process, its

autocorrelation Rr(t, τ) can be expanded using the Fourier series as follows

Rr(t, τ) =
∑
α

Rα
r (τ)e

j2παt, (2.5)

where α = ℓ/T for ℓ ∈ Z. In (2.5), Rα
r (τ) is the projection of Rr(t, τ) onto the

exponential basis function with frequency α, called the Cyclic Auto-Correlation

(CAC) given by

Rα
r (τ) =

1

T

∫ ∞

−∞
Rr(t, τ)e

−j2παt dt. (2.6)

The conjugate CAC Rα
r∗(τ) is defined similarly to Eq. (2.6) with Rr(t, τ) replaced

with R∗
r(t, τ) , E [r(t)r∗(t+ τ)], and is used for detecting cyclic features related
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Table 2.1: Cyclic features for some modulation classes that occur for conjugate
(·)∗ and non-conjugate CAC.

Modulation Peaks at (α,ν)

Class 1 ( 1
T
, 0)∗

Class 2 ( 1
T
, 0)∗, (2fc,0), (2fc ± 1

T
,0)

Class 3 ( 1
T
, 0)∗, (2fc ± 1

2T
,0)

to the signals’ symbol rates. In contrast, the non-conjugate CAC is used to detect

cyclic frequencies at a function of the carrier frequency.

When the signal parameters such as the signal’s symbol rate and carrier fre-

quency are known, cyclostationary detection can be performed [DG94,ZTD10b].

This process involves finding the amount of correlation between the received sig-

nal and a frequency shifted version of itself. One method to detect the cyclic

features of a received signal is by computing its Cyclic Auto-Correlation (CAC)

function. Estimation of both conjugate and non-conjugate CAC at an integer

lag ν using finite number of samples N results in non-asymptotic estimated CAC

given by

T∗
cd = Rα

x∗(ν) =
1

N

N−1∑
n=0

x[n]x∗[n− ν]e−j2παnTs , (2.7)

Tcd = Rα
x(ν) =

1

N

N−1∑
n=0

x[n]x[n− ν]e−j2παnTs , (2.8)

where α is the cyclic frequency which is a function of the signal’s symbol rate

and carrier frequency, ν is the lag, and Ts is the sampling period. The resulting

non-biased estimate of the CAC in (2.8) converges to the CAC defined in (2.6)

as N tends to infinity.

Table 2.1 summarizes the cyclic features for the three targeted modulation

classes [Gar91]. By using the present cyclic features, the modulation-type clas-

sifier can distinguish among three different classes of single-carrier modulation

types: Class 1 = {M-PSK (M > 2), M-QAM}, Class 2 = {M-ASK}, and Class 3

= {GMSK}.
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Similarly to energy detection, cyclostationary detection is followed by a thresh-

old comparison to determine the presence or absence of the signal. However, un-

like energy detection, cyclostationary detectors do not suffer from the SNR wall

problem [TS08], and reliable signal detection can be guaranteed at low SNR with

increased sensing time. Further, the present cyclic features of a signal can also

be used to determine the modulation type of the received signal. This will be the

basis of the modulation classifier proposed in our overall system design.

Another test statistic that can be used for cyclostationary detection and mod-

ulation classification is the Fourier transform of the CAC with respect to the lag

variable ν, which is often referred to as the Spectral Correlation Function (SCF).

This statistic is computed by cross-correlating the FFT of the received wideband

signal with itself to form the following two-dimensional map

Sx(α, f) =
1

N

N−1∑
n=0

Xn(f − α

2
)X∗

n(f +
α

2
), (2.9)

where Xn(·) is the nth FFT frame of the received signal x[n], and N is the total

number of frames over which the SCF is averaged. Unlike the CAC test statistic,

the resolution of the cyclic frequency α in the SCF is determined by the FFT size.

Once the SCF is estimated, the test statistic is computed at the cyclic frequency

αi and angular frequency fi is computed as follows

Tcd = |Sx(αi, fi)|. (2.10)

Another test statistic can be ontained by integrating the SCF over all angular

frequencies, resulting in the following test statistic

Tcd =

∣∣∣∣∣
∫ fs/2

−fs/2
Sx(αi, f) df

∣∣∣∣∣ , (2.11)

where fs is the sampling rate. A table similar to Table 2.1 showing the location

of the cyclic features in the SCF can be found in [RC11b]. As AWGN is a
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widesense stationary process and exhibits no cyclic correlation, the SCF of noise

asymptotically has no spectral features at α ̸= 0.

Let T be the computed test statistic used for signal detection, and γ be the

decision threshold that T is compared against. We start by defining the following

important metrics for signal detection:

Pfa = P (T > γ | H0) ,

Pd = P (T > γ | H1) , (2.12)

where H0 and H1 are the hypotheses where the signal of interest is absent and

present respectively. The aim of any signal detector is to meet the desired de-

tection probability while maintaining the false alarm probability below a certain

level.

Once the signal has been detected, the signal can then be classified. For

linearly modulated signals, the present cyclic features can be utilized to determine

the modulation type of the signal being processed as shown in Table 2.1. Other

non-cyclic based features will be used to discriminate among OFDM, DSSS, and

linearly modulated signals as will be shown in Chapter 4. The list of modulation

types that the receiver needs to classify is listed below

M-QAM, M-PSK, M-ASK, GMSK, OFDM, DSSS,

where M refers to the modulation order of the single carrier signals.

2.2 Signal Detection and Classification with Known / Un-

known Frequency Support

We consider two different architectural and algorithmic solutions to sensing and

classfying depending on what is assumed to be known about the signal to be
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Figure 2.1: Example of a known frequency support spectrum sensing scenario
with three different modulation types.
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Figure 2.2: Signal detection and classification strategy with known frequency
support.

detected and classified. When the the signal parameters are known, which can

occur when the PUs follow a given IEEE communication standard, the receiver

performs a multi-hypothesis cyclostationary detection to sense the presence of

cyclic features to determine if the signal is present, and to determine its modu-

lation type and order. This scenario is depicted in Fig. 2.1 where the frequency

support is known to the sensing radio, i.e. there are a finite number of subbands

to be sensed, each of which can be occupied by a user transmitting using a given

modulation type to be classified. The process depicted in Fig. 2.2 consists of

computing the test statistic (2.8) at all the cyclic frequencies given in Table 2.1,

and by comparing them to a detection threshold. If any of the test statistics

exceeds the decision threshold, a signal is said to be present. Then, depending

on which of the cyclic features are present, the modulation type of the received

signal can be estimated.
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Figure 2.3: Signal detection and classification strategy with unkown frequency
support.

Under certain scenarios, the signal parameters cannot be assumed to be

known. This can occur in military settings, or in future heterogeneous wire-

less networks where users dynamically change their transmit paramters. Under

such conditions, cyclic feature detection cannot be used directly for signal de-

tection as the cyclic frequencies are function of a the signal’s symbol rate and

carrier frequency. Instead, the receiver has to rely on energy detection for signal

detection, which will result in a coarse estimate of the symbol rate and carrier

frequency of the present signals in the wideband channel. These parameters are

later fed into a modulation classification engine which estimates the fine signal

parameters, and then detects the present cyclic features of each of the signals

to determine their modulation type and order. The algorithmic flow of such a

receiver operating in blind mode is depicted in Fig. 2.3.

2.3 Practical Issues to Consider and Design Goal

Under the known frequency support scenario, the design strategy in Fig 2.2 as-

sumes perfect knowledge of the transmit parameters, and therefore the cyclic

detector can compute the CAC at the correct cyclic frequencies α. However,

receiver impairments such as phase noise, phase jitter, frequency offsets, and

Doppler shifts might result in a cyclic frequency offset (CFO). As a result, the
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CAC will compute the test statistic at an offset from the true cyclic frequen-

cies. Further, sampling clock offset that occurs at the ADC stage results in an

computing the test statistic (2.8) using the wrong sampling period Ts. Further,

these considerations are even worsened when the receiver is operating in its blind

setting where the cyclic frequency offsets can even be larger due to inaccurate

knowledge or coarse estimates of the transmit parameters. As a result, the perfor-

mance of cyclostationary feature detectors and cyclic-based modulation classifiers

will be affected under such circumstances. Furthermore, radios operating under

both the known or unknown frequency support assumptions can suffer from non-

linearity issues as a direct result of utilizing a wideband receiver. In fact, strong

blockers in the wideband blockers might create intermodulation terms that fall

on top of weak signals that we wish to detect and classify, resulting in a loss in

signal to noise and interference ratio. As a result, this behavior will degrade the

detection performance and result in an increase in false alarm rate, and missing

the opportunity of using vacant channels.

When the transmit parameters are unknown, the processor must detect and

classify the received signal in real-time. As a result, the classification algorithms

should have a low-complexity, and should output the results within a short sensing

time. Therefore, a careful analysis of the tradeoffs between the different blocks

of the modulation classifier is needed to find the absolute minimum sensing time

required to meet the required classification accuracy. This design strategy will

be utilized to design an energy-efficiency modulation classifier.

Finally, as wideband sensing requires high rate and high resolution ADCs

which are hard to design and are power hungry devices, the total consumed

energy of the proposed system will be high. In an effort to reduce the total

sampling rate, a compressive sensing approach can be considered by exploiting

the sparsity of the received signal in its cyclic domain. In order to exploit the

sparsity in the cyclic domain, a theoretical framework needs to be laid out and

analyzed in order to study the feasibility of such an approach, and to compare
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it to the conventional compressive sensing solutions which rely on the sparsity of

the wideband channel in the frequency domain.

The goal of this thesis is to design a robust and energy efficient spectrum

sensing and modulation classification engine that meets the design objectives

while being robust to the impairments of wideband receivers.
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CHAPTER 3

Optimizing Wideband Cyclostationary

Spectrum Sensing under Receiver Impairments

In this chapter, we investigate the impact of receiver nonidealities such as carrier

frequency and sampling clock offsets on cyclostationary spectrum sensing. These

two receiver impairments were not explicitely considered in our system model in

Chapter 2. This chapter is organized as follows. In Section 3.1, we present our

system model, and present the challenges to the conventional detector under fre-

quency offsets. In Section 3.2, we present a novel multi-frame detector and study

the effect of the considered impairments on the proposed detector. In Section

3.3, we derive the cyclic SNR under both considered impairments, which is the

performance metric used to maximize the detection performance. In Section 3.4,

the average theoretical cyclic SNR at the cyclic frequency of interest is optimized

to solve for the best frame length and number of frames given the total number

of acquired samples. Further, we derive the theoretical average detection perfor-

mance of the proposed detector. We present the numerical results in Section 3.5

and compare the average detection performance of the proposed detector to the

conventional detector. Finally, some concluding remarks are given in Section 3.6.

3.1 System Model and Problem Formulation

In this section, we develop our system model and pose the hypothesis testing

problem for signal detection. We then give an overview of the conventional

cyclostationary-based test statistic for spectrum sensing, and show the impact
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of Cyclic Frequency Offsets (CFO) on the cyclic feature being detected.

3.1.1 System Model

We consider the signal model from Chapter 2 where the wideband signal could be

occupied by K PU signals xk(t) ∀k ∈ [1, ..., K] with residual carrier frequencies

fck ̸= 0, symbol periods Tk, and known modulation classes, that we want to

detect the presence of. Recall that each signal xk(t) has at least one modulation

dependent cyclic frequency αk that is used for signal detection. The received

signal r(t) is sampled with a nominal sampling period Ts, yielding the discrete

time sequence

r[n]=
K∑
k=1

xk[n],where

xk[n]=


wk[n] underHk,0,

∞∑
ℓ=−∞

ak(ℓTk)pℓ
(
nTs(1 + δt)−ℓTk

)
ej2πfck (1+δf )nTs(1+δt)+wk[n],underHk,1,

(3.1)

where ak(ℓTk) and pk(t) are the transmitted information symbols and the pulse

shaping filter of the kth PU respectively, and wk[n] is the complex AWGN in

the band occupied by the kth transmitter. We assume transmitted information

symbols with unit average power, a pulse shape filter pk(t) of unit energy, and

we define the Signal to Noise Ratio by SNRk = 1/σ2
wk

where σ2
wk

is the noise

variance in the channel occupied by xk(t). Further, δf is the frequency offset that

arises from local oscillator drifts, Doppler shift, or imperfect knowledge of the

carrier frequency. Finally, δt is defined as the the sampling clock offset (SCO)

which arises from imperfect sampling rates at the A/D stage at the receiver. We

denote T̃s = Ts(1 + δt) the actual sampling period. Both impairments δf and δt

are assumed to be fixed within the sensing interval, and vary from one sensing
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interval to the next according to a given distribution. We note that fixing δt

within the sensing interval is needed to yield a tractable theoretical analysis of

the impairment.

Unlike narrowband detectors, the sampling rate at the A/D cannot be adapted

to every signal being sensed in a wideband spectrum, and therefore the nominal

sampling period Ts is kept the same for all K signals in the band of interest. We

focus our attention on the detection of one of the K signals of interest with cyclic

frequency αk.

3.1.2 Impact of CFO on Conventional CAC and Problem Formulation

Given that cyclostationary detectors collect the energy of the received signal at

a given cyclic frequency, the power of the cyclic feature determines the detection

performance of the detector. In this section, we show the effect of CFO on the

second moment of the non-asymptotic conventional CAC, which corresponds to

the power of the cyclic feature. Given that signal and noise are assumed to

be independent, the CAC of the signal and the noise will add up. Since noise

is stationary process, we focus on studying the effect of CFO under noiseless

conditions. Let α be the cyclic frequency at which the received signal exhibits

a cyclic feature, and let α̂ be the cyclic frequency at which the sensing radio

computes the CAC, where

α̂ = (1 + ∆α)α. (3.2)

The term ∆α is referred to as the CFO. If the conjugate CAC is used for detecting

cyclic features at the signal’s symbol rate, then the CFO ∆α can only arises from

imperfect knowledge of the symbol rate as we are considering only impairments

on the receiver side. If the non-conjugate CAC is used for detecting features

at the signal’s carrier such as at α = 2fc (see Table 2.1), the CFO ∆α is equal

to δf and results from frequency offsets at the local oscillator, Doppler shifts,
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Figure 3.1: Effect of the cyclic frequency offset on the second order moment of
the CAC under noiseless conditions for a BPSK signal for a CFO ∆α = 2× 10−2,
with fc = 2.5 MHz, 1/T = 1.25 MHz, and Ts = 1× 10−7s.

or from imperfect knowledge of the carrier frequency. Note that some signals

exhibit a cyclic feature at a function of their symbol rate and carrier frequency.

As a result, the CFO ∆α will consist of both uncertainties in such a scenario.

To illustrate the effect of CFO, we show the example of the effect of the cyclic

frequency offset ∆α on the cyclic features [ZL10] of a noiseless BPSK signal when

the CFO ∆α = 1 × 10−2 on cyclic frequencies α = 2fc and α = 1/T , where the

carrier frequency is 2.5 MHz and the symbol rate is 1.25 MHz. Fig. 3.1 shows

the degradation of the cyclic features as a function of number of samples N . As

can be seen, the features get attenuated as N increases which would result in a

degradation of the detection performance.

3.2 Proposed Multi-Frame CAC Test Statistic and Effect

of SCO

We assume a total of NT incoming samples acquired during a finite sensing time

window of length Tsense = NTTs. Given that we are sensing a wideband channel,
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the sampling period Ts is therefore not related to the signal bandwidth of interest,

but rather to the bandwidth B of the channel being sensed.

As a solution to the CFO problem, we propose a novel frame-based CAC test

statistic, where each frame is of length N samples, and where M = ⌊NT/N⌋

frames are used for statistical averaging. Thus, the spectrum sensing processor

estimates the discrete non-asymptotic conjugate and non-conjugate multi-frame

CAC based on MN samples as follows,

R̃α
r∗(ν) =

1

MN

M∑
m=1

N−1∑
n=0

rm[n]r
∗
m[n− ν]e−j2παnTs ,

R̃α
r (ν) =

1

MN

M∑
m=1

N−1∑
n=0

rm[n]rm[n− ν]e−j2παnTs , (3.3)

where rm[·] is the mth frame of input samples, and M is the number of frames.

Note that the conventional test statistic in (2.8) is a special case of (3.3), where

N is replaced with NT , and where M = 1. From a complexity point of view,

the proposed detector has the same number of additions and multiplications as

the conventional CAC, and therefore they both have the same computational

complexity. Multiple frames are introduced in order to statistically average out

the noise, and the frame length N is set in order to reduce the degradation of

the cyclic feature due to the CFO. However, operating with M > 1 frames under

(3.3) introduces a phase offset from one frame to the next when NαTs is not

an integer. In the next section, we derive the effect of the sampling clock offset

on the proposed test statistic, and discuss the tradeoffs between the number of

samples per frame N and the number of frames M .

3.2.1 Effect of Multi-Frame Processing and Sampling Clock Offset on

Proposed Test Statistic

Due to its stationary property, noise will not be affected by the SCO, and therefore

the noise CAC is independent of the SCO. For this reason, we focus on the effect
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of the SCO in the noiseless case in the absence of CFO. From Eq. (3.3), in order

to avoid non-coherent integration among multiple CAC frames, NαTs should be

an integer, which means that the CAC estimation is computed over an integer

number of periods of the cyclic frequency α of interest within N samples. Let T̂s

be the sampling period such that NαT̂s is an integer. T̂s is related to T̃s via

T̃s = (1 + e)T̂s, (3.4)

where e denotes the residual offset. More formally, the residual offset e is defined

as

e =
NαT̃s

⌊NαT̃s + 0.5⌋
− 1. (3.5)

Note that ⌊NαT̃s + 0.5⌋ is equivalent to rounding NαT̃s to its nearest integer. We

assume that NαT̃s+0.5 > 1 for practical sensing times, and therefore e is always

properly defined. If the sampling and detection is performed coherently, then

T̃s = T̂s, and therefore e = 0. Note that when e = 0, each frame of (3.3) can be

represented as the DFT Ym[αNT̂s] of the time sequence ym[n] = rm[n]r
∗
m[n− ν],

Ym[αNT̂s] =
1

N

N−1∑
n=0

ym[n]e
− j2πn(αNT̂s)

N . (3.6)

Given that the SCO results in a drift in sampling times with respect to ym[n],

the time-shift varies as n increases. Let ỹm[n] be a time-shifted version of ym[n],

i.e, ỹm[n] = ym[n− n0]. Their DFTs are related as follows:

Ỹm[η] = Ym[η]e
− jηn0

N . (3.7)

We use the time-shift property of the DFT to approximate the effect of the SCO

on the multi-frame CAC. As an approximation, we consider the maximum time-

shift mNe applied to all time samples ym[n] within one frame, where m varies
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from 1 to M . Therefore, we obtain the following relationship

Ỹm[αNT̃s] =

{
1

N

N−1∑
n=0

ym[n]e
− j2πn(αNT̃s)

N

}
ej2παT̂sNe

= Ym[αNT̂s]e
j2παT̂sNe. (3.8)

We let the multi-frame test statistic under non-zero SCO be denoted by R̂α
r∗(ν),

and obtain the following relationship

R̂α
r∗(ν) =

1

MN

M∑
m=1

{
N−1∑
n=0

ym[n]e
− j2παnNT̂s

N

}
e−2παkNT̂se

≃ R̃α
r∗(ν)

sin(παNMeT̂s)

M sin(παNeT̂s)
e−jπeα(M+1)

= R̃α
r∗(ν)

sin(παNMT̃s)

M sin(παNT̃s)
e−jπeα(M+1)

= R̃α
r∗(ν)

sin
(
παNMTs(1 + δt)

)
M sin

(
παNTs(1 + δt)

)e−jπeα(M+1) (3.9)

where the last equality is obtained by noting that T̃s = Ts(1 + δt) where δt is

the SCO, and where we have used the fact that the test statistic converges to

its true value within a single frame under noiseless conditions, and therefore∑N−1
n=0 ym[n]e

− j2παnNT̂s
N ≃ R̃α

r∗(ν), whereas the summation of M frames results in

the decaying factor since NαTs(1 + δt) is a non-integer. From (3.9), we can see

that whenM = 1 which coincides with the conventional detector, or whenM > 1

and αNT̃s is an integer, the SCO has no effect on the cyclic features. The same

result obtained in (3.9) holds for the non-conjugate CAC as it holds for any ym[n].

Note that even when δt = 0, the multi-frame processing can cause degradation

to the cyclic feature if NαTs is not an integer.

In Fig. 3.2(a) we show the effect of the SCO δt on the cyclic features of a

BPSK under noiseless conditions and M = 3 frames when NαTs is an integer,

where the vector composed of the cyclic features has been normalized to unit

energy for illustration purposes. We note that the theoretical curves match the
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ones obtained by simulation, which validates the approximation made in (3.9) for

reasonable values of the SCO δt ranging from 0 to 5000 ppm.

After having studied the effect of the deterministic SCO on the test statistic

under noiseless conditions, we focus now on its effect under the presence of noise.

We numerically evaluate the detection probability of the single cycle detector

which detects the cyclic feature at α = 2fc in order to show the degradation in

detection performance under non-zero SCO. Fig. 3.2(b) shows the effect of the

SCO on the detection probability of a BPSK signal while maintaining a constant

false alarm (CFAR) of 0.1 at a fixed SNR = 5 dB, when NαTs is an integer. The

detection probability drops to as low as 0.3 periodically, and the rate at which

the dip occurs increases with increasing M .

We wish to emphasize that the effect of the SCO in the multi-frame detector

on the cyclic features can be overcome by resampling every narrowband signal

independently such that the resulting residual offset e = 0. However, due to

the SCO δt which is unknown at the receiver, truly reducing e to zero would be

impossible. In addition, since we are interested in sensing multiple signals simul-

taneously with different cyclic frequencies α, this solution would require either

additional hardware complexity and power consumption, or additional sensing

delay. In fact, multiple receiver chains can be deployed where each chain is re-

sponsible for resampling and sensing a given signal, therefore reducing it to the

narrow-band approach for wideband sensing which is costly. The other alterna-

tive is to resample and sense sequentially, which increases the delay of the sensing,

and therefore reduces the probability of finding unused spectrum.

Our objective is to compensate for the effects of SCO and CFO without fil-

tering and resampling each signal in the wideband channel. In order to suppress

the SCO effect, collecting the samples in a single frame achieves the best per-

formance. However, increasing the number of samples per frame degrades the

cyclic features under CFO. Therefore, there exists a tradeoff between the frame

length and number of frames. In order to find the best split of samples under
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Figure 3.2: Effect of sampling clock offset on the cyclic features of a BPSK signal,
and the corresponding effect on the detection performance with fc = 2.5 MHz,
1/T = 1.25 MHz, and Ts = 1× 10−7s.

the considered impairments, we start by deriving the cyclic SNR. The cyclic SNR

is defined as the ratio of the test statistic power under the signal-only case at a

given cyclic frequency, to that under H0 given a sampling clock offset δt and a
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cyclic frequency offset ∆α.

3.3 Theoretical Cyclic SNR of the Multi-Frame Statistic

under Frequency and Sampling Clock Offsets

Since the detection performance is determined by the cyclic SNR, optimizing

the sensing performance requires deriving the cyclic SNR under the considered

impairments. Mathematically, we define the cyclic SNR at a cyclic frequency αk

using the conjugate statistic, without loss of generality, given a SCO δt and CFO

∆α as

SNRαk|δt,∆α =
E[|R̂αk

s∗ (ν)|2]
E[|R̂αk

w∗(ν)|2]
, (3.10)

where the noiseless signal of interest for a given signal index k under no impair-

ment is denoted by s[n] and given by

s[n] =
∞∑

ℓ=−∞

ak(ℓTk)pℓ
(
nTs(1 + δt)− ℓTk

)
ej2πfck (1+δf )nTs(1+δt). (3.11)

The above definition can also be used for the non-conjugate multi-frame statis-

tic. In order to analytically derive the cyclic SNR of the proposed test statistic,

we start by finding the non-asymptotic second moments of the multi-frame test

statistic under no impairments in Section 3.3.1 and 3.3.2. Then, we derive the

theoretical moments under the considered impairments in Section 3.3.3, and the-

oretically find the cyclic SNR for a given realization of δt and ∆α in Section

3.3.4.

3.3.1 Theoretical Moments of the CAC under H0

In this section, we find the theoretical second moment of the conjugate and

non-conjugate multi-frame test statistic under H0, namely, E[|R̂αk
w∗(ν)|2] and
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E[|R̂αk
w (ν)|2].

The derivation of the theoretical moments is given in Appendix A.1, and the

results are summarized below for convenience. For the conjugate multi-frame

CAC, the second moment for zero lag ν is given by

E[|R̂αk
w∗(0)|2] =

σ4
w

MN
+
σ4
w sin

2(παkNTs)

N2 sin2(παkTs)
. (3.12)

Similarly, for the non-conjugate multi-frame CAC, the second moment is given

by

E[|R̂αk
w (0)|2] = 2σ4

w

MN
. (3.13)

It is worth noting that the second term in (3.12) can be omitted for the conjugate

statistic since αk ≪ 1/Ts, and therefore αkTs ≪ 1 in wideband channels. As a

result, the moments of both conjugate and non-conjugate multi-frame statistics

are a function of the product ofM and N , which implies that the way the samples

are split does not affect the second moment of the proposed statistic under H0.

Under non-zero lag ν, the second moment of both conjugate and non-conjugate

multi-frame CAC are given by

E[|R̂αk
w (ν)|2] = E[|R̂αk

w∗(ν)|2] =
σ4
w

MN
,∀ν ̸= 0. (3.14)

3.3.2 Theoretical Moments of the Multi-Frame CAC under Noiseless

Conditions and under No Impairments

Next, we find the theoretical second moment of the multi-frame test statistic

under noiseless conditions. Given that we have derived in (3.9) the relation-

ship between the multi-frame test statistic under SCO to the statistic without

impairments, we focus here on deriving the theoretical moment of the tests statis-

tic under no impairments. Therefore, we assume in this section that the CFO
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∆α = 0, and NTsα is an integer with δt = 0.

Let u2 , E[|a|2] and u4 , E[|a|4]. The theoretical second moment of the multi-

frame statistic under noiseless conditions is derived in Appendix A.2, and the final

expressions are given below for both conjugate and non-conjugate moments

E[|R̂αk
s∗ (ν)|2] =

P4

MN2
[u4 − u22] +

|P2|2u22
N2

, (3.15)

E[|R̂αk
s (ν)|2] = P4

MN2
[u4 − u22] +

|P ′
2|2u22
N2

, (3.16)

where we have defined L = T/Ts as the oversampling ratio, and defined the

following functions

g(n1, n2, ν)=p

(
n1T

L
−
⌊n1

L

⌋
T

)
p

(
n1T

L
−
⌊n1

L
− ν

T

⌋
T

)
×

p

(
n2T

L
−
⌊n2

L

⌋
T

)
e−j2παk(n1−n2)Ts×

p

(
n2T

L
−
⌊n2

L
− ν

T

⌋
T

)
, (3.17)

from which we obtain the following parameters

P2 =

N−1∑
n=0

p

(
nT

L
−
⌊n
L

⌋
T

)
p

(
nT

L
−
⌊n
L
− ν

T

⌋
T

)
e−j2παknTs ,

P4 =
N−1∑
n=0

g(n, n, ν), (3.18)

P
′
2 =

N−1∑
n=0

p

(
nT

L
−
⌊n
L

⌋
T

)
p

(
nT

L
−
⌊n
L

− ν

T

⌋
T

)
×

e−j2π(αk−2fck )nTs . (3.19)

With the theoretical moments in the absence of the considered impairments, we

now derive the moments under both CFO and SCO.
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3.3.3 Theoretical Moments of the Multi-Frame CAC under Noiseless

Conditions in the presence of CFO and SCO

Given a CFO ∆α ̸= 0 and a SCO δt = 0, the multi-frame test statistic is computed

at α̂ = α(1 +∆α). It can be shown that P2 defined in (3.18) can be written in a

more general form under non-zero CFO as

P̂2 =
N−1∑
n=0

p

(
nT

L
−
⌊n
L

⌋
T

)
p

(
nT

L
−
⌊n
L
− ν

T

⌋
T

)
e−j2πα̂knTs

= P2
sin(παkN∆αTs)

N sin(παk∆αTs)
. (3.20)

Similarly, P
′
2 in (3.19) under a non-zero CFO can be expressed as

P̂
′

2 = P
′

2

sin(παkN∆αTs)

N sin(παk∆αTs)
. (3.21)

Therefore, under a given realization of the CFO ∆α, Eq. (3.15) and (3.16) can

be generalized as

E[|R̂αk
s∗ (ν)|

2 | ∆α]=
P4

MN2
[u4−u22]+

|P2|2u22 sin(παkN∆αTs)
2

N4 sin(παk∆αTs)2

E[|R̂αk
s (ν)|2 | ∆α]=

P4

MN2
[u4−u22]+

|P ′
2|2u22 sin(παkN∆αTs)

2

N4 sin(παk∆αTs)2
(3.22)

Finally, from (3.9), under a given realization of the SCO δt, the theoretical second

moment of the multi-frame CAC under non-zero CFO and SCO can be expanded

as

E[|R̂αk
s (ν)|2 | δt,∆α] =

(
P4

MN2
[u4−u22]+

|P ′
2|2u22 sin(παkN∆αTs(1 + δt))

2

N4 sin(παk∆αTs(1 + δt))2

)
sin2(παkNMTs(1 + δt))

M2 sin2(παkNTs(1 + δt))
, (3.23)

E[|R̂αk
s∗ (ν)|

2 | δt,∆α] =

(
P4

MN2
[u4−u22]+

|P2|2u22 sin(παkN∆αTs(1 + δt))
2

N4 sin(παk∆αTs(1 + δt))2

)
sin2(παkNMTs(1 + δt))

M2 sin2(παkNTs(1 + δt))
. (3.24)
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With the theoretical seconds moments of the multi-frame test statistic under noise

only and signal only, we now find the theoretical cyclic SNR under non-zero SCO

δt and CFO ∆α.

3.3.4 Theoretical Cyclic SNR under SCO and CFO

Although we have derived the second-order moments of the multi-frame proposed

statistic under arbitrary ν, we devote the remainder of the theoretical results to

deriving the theoretical average detection performance specifically at lag ν = 0 as

given in Table 2.1. A similar analysis can be performed for non-zero lag detection

given the theoretical results derived in the appendices. Using the derived statistics

in Eq. (3.12) and (3.24) and the definition of cyclic SNR in (3.10), the cyclic SNR

at lag ν = 0 for the conjugate multi-frame test statistic can be expressed as

SNRαk|δt,∆α
=

P4[u4 − u22] sin
2(παkNMTs(1 + δt))

2NM2σ4
w sin2(παkNTs(1 + δt))

+

|P2|2u22 sin2(παkN∆αTs(1 + δt)) sin
2(παkNMTs(1 + δt))

2N3Mσ4
w sin2(παk∆αTs(1 + δt)) sin

2(παkNTs(1 + δt))
. (3.25)

In Fig. 3.3(a), we verify our intuition about the tradeoffs in splitting the acquired

samples, and plot the theoretical cyclic SNR of a BPSK signal at cyclic frequency

α = 2fc under SNR = -5 dB,N = 256 samples, andM = 10 averages as a function

of both SCO δt and CFO ∆α, when NαTs is an integer. In addition, the cyclic

SNR is shown in Fig. 3.3(b) under the same CFO and SCO values using the same

number of samples NT = 2560, but using N = NT and M = 1. These two figures

illustrate the tradeoffs between the conventional and the proposed multi-frame

detector: the conventional test statistic is robust to SCO but degrades with CFO,

and the multi-frame test statistic varies with both SCO and CFO. The aim of the

next section is to find the best frame length that maximizes the average cyclic

SNR given the distribution of the CFO and the SCO.
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(a) Theoretical cyclic SNR at cyclic frequency α = 2fc
for a BPSK signal at SNR = -5 dB as a function of cyclic
frequency offsets ∆α and sampling clock offset δt, with N
= 256, M = 10.

(b) Theoretical cyclic SNR at cyclic frequency α = 2fc
for a BPSK signal at SNR = -5 dB as a function of cyclic
frequency offsets ∆α and sampling clock offset δt, with N
= 2560, M = 1.

Figure 3.3: Theoretical cyclic SNR at αk = 2fc versus sampling clock offset and
cyclic frequency offset under the proposed and conventional test statistics with
fc = 2.5 MHz, 1/T = 1.25 MHz, and Ts = 1× 10−7s.

3.4 Optimizing the Detection Performance under both

SCO and CFO

In this section, we find the optimum frame length and number of frames to be

used for detection of cyclic features under both CFO and SCO in order to yield

37



the best average detection performance for signal xk[·], given the distribution of

the frequency and clock offsets. Note that the cyclic SNR is a function of the

cyclic frequency αk of interest. As a result, the best way to split the samples

is dependent on αk and has to be performed for each of the K signals in the

wideband channel.

3.4.1 Optimum (M̂αk
, N̂αk

) Pair Selection

The cyclic SNR at a cyclic frequency αk given a SCO δt and CFO ∆α has been

derived in (3.25). We let P∆(·) and Pδ(·) denote the pdf of the frequency offset

and clock offset respectively. The average cyclic SNR at a given cyclic frequency

αk can therefore be computed as follows

SNRαk
=

∫ ∞

−∞

∫ ∞

−∞
SNRαk|δt,∆αP∆(∆α)Pδ(δt) d∆αdδt. (3.26)

Denoting I1(αk) and I2(αk) by

I1(αk) =

∫ ∞

−∞

sin2
(
παkNMTs(1 + δt)

)
M2 sin2(παkNTs(1 + δt)

)Pδ(δt) dδt (3.27)

I2(αk) =

∫ ∞

−∞

∫ ∞

−∞

sin2
(
παkN∆αTs(1 + δt)

)
N2 sin2

(
παk∆αTs(1 + δt)

)×
sin2

(
παkNMTs(1 + δt)

)
M2 sin2

(
παkNTs(1 + δt)

)P∆(∆α)Pδ(δt) d∆αdδt,

the average cyclic SNR at αk can be written as

SNRαk
=
P4[u4 − u22]

2Nσ4
w

I1(αk) +
M |P2|2u22
2Nσ4

w

I2(αk). (3.28)

In order to maximize the detection probability of the kth signal subject to the

sensing time constraint, we maximize SNRαk
. Let the optimum frame length

and the number of frames be denoted by N̂αk
and M̂αk

respectively, such that

N̂αk
M̂αk

≤ NT which adds a constraint to the sensing time. Note that an addi-
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tional constraint should be added with respect to the frame length N̂αk
since a

minimum number of samples Nmin is required to ensure that the test statistic cov-

ers a few information symbols within one frame. From (3.28), the maximization

problem can be written as

(N̂αk
, M̂αk

) = argmax
N,M

P4[u4 − u22]

2Nσ4
w

I1(αk)+
M |P2|2u22
2Nσ4

w

I2(αk)

such that NM ≤ NT , and N ≥ Nmin (3.29)

which shows that the best method of splitting the incoming samples is indepen-

dent of the noise variance. As a result, this optimization can be performed offline

given the distribution of the two considered impairments, and the optimum split

of samples for cyclic frequency αk will hold for all SNR levels as the best split is

independent of the noise variance. The optimization problem has therefore been

simplified to a two dimensional integer optimization problem which could be ef-

ficiently solved numerically as it only requires the knowledge of the statistical

distribution of the considered impairments.

3.4.2 Theoretical Average Detection Performance for a Given Distri-

bution of CFO and SCO

So far, we have used the cyclic SNR as a metric to optimize the detection perfor-

mance. In this section, we quantify the average detection performance under a

given average cyclic SNR and any (M,N) pair including the optimum (M̂αk
, N̂αk

)

pair. We make use of the Central Limit Theorem (CLT) in order to approximate

the distribution of R̂αk
r (0) as a Gaussian distribution [DNL10]. Further, the anal-

ysis below is based on the non-conjugate multi-frame test statistic, assuming that

the detection is based on the cyclic feature at α = 2fc. Given that the CAC has

non-zero mean under H0, the test statistic |R̂αk
x (0)| will be Ricean distributed.
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The mean and variance of the test statistic can be obtained as

µ0 , E[R̂αk
w (0)] =

σ2
w sin(παkNTs)

N sin(παkTs)
,

σ2
0 , E[|R̂αk

w (0)|2]− µ2
0 =

2σ4
w

MN
− σ4

w

N2

sin2(παkNTs)

sin2(παkTs)
. (3.30)

Therefore, the probability of false alarm Pfa(·) can be evaluated as

Pfa(γ) = Q1

(
µ0√
σ2
0/2

,
γ√
σ2
0/2

)
, (3.31)

where γ is the threshold chosen to yield a constant false alarm rate (CFAR), and

Q1(·, ·) is the Marcum Q function. Further, since the mean of the cyclic feature

is a function of both CFO and SCO, it can be easily shown in a similar fashion

as Eq. (3.24) was derived that the average theoretical mean of the non-conjugate

CAC under noiseless conditions is given as

µs , E[|R̂αk
s (0)|] = u2P

′
2

N
U, (3.32)

where P
′
2 is defined as in (3.19) and is computed for the cyclic frequency αk of

interest, and where

U =

∫ ∞

−∞

∫ ∞

−∞

sin(παkN∆αTs(1 + δt))

N sin
(
παk∆αTs(1 + δt)

)×
sin
(
παkNMTs(1 + δt)

)
M sin

(
παkNTs(1 + δt)

)Pδ(δt)P∆(∆α) d∆αdδt. (3.33)

The parameters of the Ricean distribution are given by

µ1 =
√
µ2
s + µ2

n =

√
σ2
w sin

2(παkNTs)

N2 sin2(παkTs)
+
u22P

′2
2 U

2

N2
, (3.34)

σ2
1 = 0.5Var

(
|R̂αk

s (0)|
)
+ 0.5Var

(
|R̂αk

w (0)|
)

=
P4(u4 − u22)

2MN2
I1(αk)+

|P ′
2|2u22
2N2

I2(αk) +
σ4
w

MN
− σ4

w

2N2

sin2(παkNTs)

sin2(παkTs)
. (3.35)
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Finally, the detection probability can be expressed as

Pd(γ) = Q1

(
µ1√
σ2
1/2

,
γ√
σ2
1/2

)
, (3.36)

where Q1(·, ·) is again the Marcum Q function.

3.5 Numerical Results

This section is aimed at showing the performance gains achieved by the proposed

multi-frame detector in the presence of the considered impairments. The spec-

trum being monitored is 10 MHz wide. In Section 3.5.1, the derived moments

needed for the cyclic SNR expression are verified under a given realization of the

CFO and the SCO. In section 3.5.2, the average cyclic SNR is optimized under a

fixed sensing time, resulting in the optimum frame length and number of frames

given a certain realization of the cyclic frequency and sampling clock offsets.

Given the average cyclic SNR, the theoretical average probability of detection

and false alarm are then compared against numerical simulations. Finally, we

show in Section 3.5.3 the gains in cyclic SNR that can be achieved using the

proposed multi-frame statistic.

3.5.1 Verification of Derived Statistics under a Given Realization of

the Impairments

In the first section of the numerical results, we verify the derived statistics of

the multi-frame CAC under receiver impairments for fixed CFO and SCO values.

First, Fig. 3.4 verifies the derived statistics of the conjugate and non-conjugate

CAC under H0 obtained in (3.12) and (3.13) for two different values of σ2
w at N =

256, for varying frames M . As expected, the second moment of the CAC under

H0 decreases as the number of frames M increases, which helps in separating

the cyclic feature of interest from the noise. Note that with respect to noise
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Figure 3.4: Verification of the theoretical derivation of the CAC second moment
under H0 under σ2

w = 1 and σ2
w = 2.

suppression, different choices ofM and N under a fixed sensing time result in the

same test statistic second moment under H0, and therefore the CAC distribution

under H0 is only a function of the sensing time, and does not depend on the split

between N and M .

Similarly, Fig. 3.5 verifies the theoretical derivations obtained in (3.24) where

both the CFO and SCO have been fixed to ∆α = δt = 1× 10−4 for M = 10 and

M = 20, where the number of samples per frame N has been varied for a fixed

sampling period Ts. As expected, increasing the number of samples per frame

results in the smearing of the cyclic feature of interest because of the compounded

effects of non-zero SCO and non-zero CFO. Now that the theoretical derivations

have been verified under a fixed realization of the frequency and clock offsets, the

optimum (M̂αk
, N̂αk

) can be chosen to achieve the maximum achievable average

cyclic SNR given in (3.28).
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Figure 3.5: CAC second moment under noiseless conditions of a BPSK signal at
α = 2fc versus N , for M = 10, 20 for a fixed ∆α = δt = 1 × 10−4 and fc = 2.5
MHz, 1/T = 1.25 MHz, and Ts = 1× 10−7s.

3.5.2 Optimum (M,N) Pair Selection

In the numerical results that follow, we have used zero-mean Gaussian distribu-

tion to model both the cyclic frequency and sampling clock offsets as assumed

in [One09, LKS09,BCC07], with variances σ2
sco and σ2

cfo respectively. More for-

mally,

P∆(∆α) =
(
2πσ2

cfo

)− 1
2 e

−0.5

(
∆α
σcfo

)2

, (3.37)

Pδ(δt) =
(
2πσ2

sco

)− 1
2 e−0.5( δt

σsco
)
2

. (3.38)

Note that a similar analysis can be conducted using any frequency and clock

offset distributions.

In this section, we show the average CAC second moment of a BPSK signal at

α = 2fc with unit average energy symbols for a fixed sensing time, NM = 5000

samples. In this setup, the distributions of the frequency and clock offsets are

such that σsco/σcfo = 0.2, where σcfo = 1 × 10−4. The average second moment

of the non-conjugate multi-frame statistic under noiseless conditions is computed
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at every combination (M,N), and its value is compared in Fig. 3.6(a) to the

theoretically derived one, given by

P4

MN2
[u4−u22]I1(αk) +

|P ′
2|2u22
N2

I2(αk). (3.39)

obtained by averaging (3.24) over the distribution of the CFO ∆α and the SCO

δt. Note that theoretical results and simulations are matched, which validates our

analysis. Interestingly, it can be observed that increasing the number of framesM

does not result in a clear trend with respect to the average CAC second moment.

In fact, M = 8 results in a much worse average CAC moment than M = 7. The

reason for this behavior is because atM = 6, 8, 9, the resulting number of samples

per frame are such that the degradation due to the multi-frame processing totally

degrades the feature to be detected, therefore resulting in an average second-order

moment of the signal’s feature that is close to zero. The optimum method for

splitting the acquired samples to achieve the best average detection performance

is verified in Fig. 3.6(b) under the same frequency and clock offsets conditions

as mentioned above, with σ2
w = 1. As expected, we can see that the way by

which the samples are split is crucial to the detector’s performance under the two

considered impairments, and the best average detection performance is attained

using M = 12. Note that this optimization can be performed offline since it

only depends on the distribution of the receiver impairments, and therefore its

computational complexity, although minimal, is not of a great importance.

Next, the theoretical average detection performance of the proposed detec-

tor under a fixed sensing time of NM = 5000 samples is compared against

the empirically obtained detection performance for different SNR values, where

σsco/σcfo = 0.2, and where σcfo = 1 × 10−4. The best splitting method is the

same as the one determined in Fig. 3.6(a) which results in splitting the acquired

samples into M = 12 frames. Fig. 3.7 verifies the average theoretical probability

of false alarm and detection derived in (3.31) and (3.36) at different SNR val-

44



ues. Further, we show by numerical simulations the effect of varying the SCO

δt on a per sample basis on the average detection performance. Interestingly, a

time varying SCO within the sensing window has a minimal effect on the average

detection performance.

3.5.3 Cyclic SNR Gain Achieved by the Proposed Method Compared

to the Conventional Detector

In this section, we compare the average cyclic SNR of the proposed detector with

the average cyclic SNR of the conventional detector (M = 1) in order to show

the achievable gains in splitting the acquired samples into frames. The numerical

results given in Fig. 3.8 depict the average cyclic SNR at α = 2fc of a BPSK signal

with average unit energy symbols, under a noise variance of σ2
w = 1 as a function

of the sensing time. The optimization (3.29) is performed for each sensing time

which corresponds to a fixed total number of samples, and the best splitting

method which results in the maximum cyclic SNR is chosen according to (3.29).

Note that the optimization and the results do not depend on the noise variance σ2
w

as was pointed out earlier. Fig. 3.8 depicts the gains that one could achieve given

the distribution of the receiver impairments at hand, where the distribution of the

frequency offset has been kept constant, with σcfo = 4× 10−4 which results from

imperfect knowledge of the cyclic frequencies. Two extreme cases are compared

in this figure. The average cyclic SNR using the conventional detector based on

the single-frame CAC is given, and is compared to the optimum case using the

multi-frame statistic when e = 0 which can only occur when no sampling clock

offset δt is present at the receiver and resampling is performed such as NαTs is

an integer for every frame length considered. We consider the latter case to be

the upper bound on the average detection performance since we can reduce the

effects of CFO by reducing the frame size, without incurring any penalty due to

the SCO as a result of the multi-frame statistic. The rest of the curves show the

average cyclic SNR gains that could be achieved without resampling for various
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clock offset distributions, starting with σsco = σcfo, for which no gain is achieved

in splitting the incoming samples. As the ratio of σsco/σcfo decreases, the gains

of the proposed method become more pronounced, and tend to the upper bound

without any SCO where the maximum achievable gain is reached. Intuitively, the

clock and frequency offsets introduce similar decaying terms in the cyclic SNR

expression. When the clock offset is less dominant than the frequency offset, i.e.,

σsco < σcfo, which is common case in practice, then splitting the samples using

the proposed test statistic would result in performance gain in the average sense.

It is worth noting that the upper bound on the average detection performance

is when the frame length is N = Nmin which minimizes the degradation due to

the CFO ∆α, and where resampling is performed so that e = 0. Such a detection

is equivalent to performing the detection using the conventional CAC under no

impairments. As a result, depending on the relationship between σsco and σcfo,

the average detection performance of the proposed detector can meet that of

conventional detectors under no impairments without the need for resampling

and incurring any additional computational complexity.

3.6 Summary

In this chapter, we have shown that conventional cyclostationary detectors are not

robust to receiver impairments, and signal detection in low SNR regimes becomes

challenging under the resulting cyclic frequency offsets. We have proposed a new

multi-frame cyclostationary detector, and have derived the average cyclic SNR

that can be optimized to maximize the average detection performance under

frequency and sampling clock offsets given their statistical distributions. We

have developed an optimization tool to theoretically analyze and quantify the

achievable gains that could be achieved using the proposed method. Further, we

have derived the theoretical average detection and false alarm probabilities of the

proposed detector under the two considered impairments. The main contributions
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of this work lie in understanding the impact of frequency and clock offsets on

cyclostationary detectors and in developing a tool to verify when detection can

be improved by splitting the acquired samples into frames and using our proposed

detector. Given the distribution of the frequency and clock offsets at the sensing

radio, this optimization tool can be used as a design guideline for wideband

spectrum sensing devices that are able to simultaneously sense multiple signals

without the increased complexity due to resampling the received signal on a per-

signal basis.
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Figure 3.6: Average cyclic SNR for BPSK signal using single cycle detector at
α = 2fc and its resulting empirical detection performance with varying num-
ber of frames M under a fixed sensing time with NM = 5000 samples, and
σsco/σcfo = 0.2 with σcfo = 2 × 10−4, fc = 2.5 MHz, 1/T = 1.25 MHz, and
Ts = 1× 10−7s.
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Figure 3.7: Theoretical and empirical average probability of detection vs. proba-
bility of false alarm for single cycle detector on BPSK signal with a total number
of samples NM = 5000 samples, cyclic frequency α = 2fc under random fre-
quency and clock offset distributions with σsco/σcfo = 0.2 with σcfo = 2 × 10−4

using the optimum split M = 12 frames obtained from Fig. 6. Signal parameters
are given by fc = 2.5 MHz, 1/T = 1.25 MHz, and Ts = 1 × 10−7s. Simulated
ROC curves with varying SCO δt on a per sample basis are shown in dashed lines.
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CHAPTER 4

Energy-Efficient Processor for Blind Signal

Classification in Cognitive Radio Networks

Blind modulation classification is particularly challenging from the energy con-

sumption point of view. In fact, as cycostationary-based classification requires

detecting the present cyclic features of the received signal, estimating both the

symbol rate and carrier frequency is therefore necessary. We present a recon-

figurable processor architecture that can blindly classify any linearly modulated

signal (M-QAM, M-PSK, M-ASK, and GMSK) in addition to multi-carrier signals

and spread spectrum signals. The main contribution of this work is to analyze

the complexity tradeoffs among different dependent signal processing kernels in

order to minimize the total processing time and energy.

In this chapter, we propose an implementation with high functional diversity

and energy/area efficiency. By jointly considering the algorithm and architecture

layers, we first select computationally efficient parameter estimation and modula-

tion classification algorithms. We then exploit the functional similarities between

algorithms to build a processing architecture that maximizes hardware utiliza-

tion. In addition, we carefully analyze the processing strategy of the processor

in order to minimize the overall consumed energy.

This chapter is organized as follows. We present in Section 4.1 our design

objectives for the blind modulation classifier. Section 4.2 presents the overall

receiver architecture and the design challenges in blind classification. Section 4.3

describes the low-complexity signal processing modules implemented in the pro-

50



Band Segmt. 

+ CIC Filter
Multi-carrier Signals

No

Symbol Rate & 

Carrier Frequency

Yes

Modulation 

Type

Spread

Spec.

Decimation 

& Mixing

Magnitude 

& Phase

Mod. 

Level

Feature 

Database
DB

Modulation-level Classification

Time

E
n

e
rg

y

This Work

if BPSK

Blind Trmt.

Param. Est.

Detection &

Code Length

Mod.-Type 

Classification

Multi-

Carrier Test

Figure 4.1: Top-level block diagram with energy-time breakdown of the process-
ing kernels of the proposed blind modulation classifier.

cessor. In Section 4.4, we present the proposed energy optimization methodology,

in which we analyze the tradeoffs among dependent blocks of the architecture.

Some numerical results are presented in Section 4.5. Finally, Section 4.6 summa-

rizes the chapter.

4.1 Design Objectives

The design specifications of the proposed classifier are summarized in Table 4.1.

We consider a minimum SNR of 10 dB, which is reasonable for classification of

interferers in multi-user detection and blind signal demodulation applications.

We note that we do not estimate the received SNR in the proposed processor.

Instead, we guarantee that when the SNR exceeds 10 dB, the proposed processor

will correctly classify the received signal with a minimum probability of 95%. The

frequency resolution is set to 12.5 KHz in order to allow a fine spectral resolution

to detect narrowband interferers. The classifier should identify multi-carrier,

spread spectrum and linearly modulated signals correctly with a probability of

95%. Within the linearly modulated signals, the classifier should also distinguish
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Table 4.1: Design Specifications of the Proposed Modulation Classifier.
Variables Specifications

Modulation Types
M-QAM, M-PSK, M-ASK,
GMSK, OFDM, DSSS

Probability of Correct Classification ≥ 0.95
Energy Budget 15 µJ
Proc. Time Budget 2 ms
Channel Bandwidth 500 MHz
Frequency Resolution 12.5 KHz
Signal Bandwidth ≤ 500 MHz
Minimum SNR 10 dB

the modulation types given in Table 4.1. The proposed processor needs to meet

an energy constraint of 15 µJ and a processing time of 2 ms.

4.2 Design Considerations

This section describes the overall receiver architecture and shows how the pro-

posed modulation classification processor fits as part of a wideband receiver chain.

We then describe the challenges in blind modulation classification and give an

intuitive explanation behind the tradeoffs among different blocks of the proposed

processor.

4.2.1 System Model

We illustrate in Fig. 4.1 the top-level block diagram of the blind signal classifier.

Before classification, the processing flow follows the flow presented in Fig. 2.3.

At the beginning, the RF front-end filters and downconverts a 500 MHz spectrum

to baseband. The signal is then sampled and digitized for baseband processing.

The digital baseband part starts with a sensing engine, referred to as the band

segmentation, that detects the presence of one or more signals in the wideband

channel in the presence of Additive White Gaussian Noise (AWGN) [YSR11].

The detection is based on energy detection which estimates the spectrum of the

52



received signal. The sensing time and threshold for detection are adjusted to

meet the desired probability of detection and false alarm. The supported signals

that can be classified could be of any modulation type given in Table 4.1 with

bandwidth greater than 12.5 KHz, and could be located at any carrier frequency.

Since this chapter deals with the design of the signal classification processor, we

assume that the signal has already been detected. Identifying the presence of

a signal during band segmentation inherently results in coarse estimates of the

signal’s carrier frequency and symbol rate. Using the coarse transmit parameters,

the detected signal is down-converted and filtered using a reconfigurable Cascade-

Integrator-Comb (CIC) filter [Hog81]. The output of the CIC filter is fed to the

modulation classifier to identify the modulation type of the signal. In the event of

detecting multiple signals in the wideband channel, each signal is downconverted

and processed by the CIC filter sequentially.

This work focuses on the design of an energy-efficient modulation classifier,

which detects the types of signals using the optimized tree-based approach shown

in Fig. 4.2. The proposed modulation type classifier is based on second-order

cyclostationary properties of the received signal and therefore does not distinguish

among different levels of a given modulation type. However, once the modulation

type is found, the signal can then be fed to a modulation-level classifier. In our

earlier work, we developed a low-complexity modulation-level classifier [URP11]

based on the distribution distance test that chooses the modulation level whose

cumulative distribution function (CDF) is closest the received symbols CDFs.

The performance of the proposed modulation-level classifier has been compared

in hardware experiments [URC11] against the well-known cumulants classifier

[SS00]. Although the modulation-level classifier can be implemented as part of

the proposed processor, it is not considered in this work due to its very low

computational complexity and consumed energy.
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Figure 4.2: Signal classification tree showing the possible modulation classes
recognized by the proposed processor.

4.2.2 Design Challenges

The objective of the proposed classifier is to minimize its consumed energy while

achieving the required probability of correct classification. The energy mini-

mization is achieved by 1) selecting and developing computationally efficient al-

gorithms, and 2) by minimizing the total classification time while meeting the

classification accuracy of 95%. Although existing maximum-likelihood-based al-

gorithms [WM00a, SK11] can meet the classification requirement, their compu-

tational complexity results in power and/or delay requirements that cannot be

tolerated in real-time operating radios. In addition, blind modulation classifiers

require the estimation of the signal’s transmit parameters, adding to the overall

complexity of the receiver. Therefore, our objectives in meeting the specifications

are twofold: 1) developing low-complexity algorithms that meet the classification

probability, 2) minimize the processing times of all the blocks in order to satisfy

the energy budget.

As a result of the 12.5 KHz resolution of the band segmentation, the coarse

estimates of the symbol rate and carrier frequency obtained from the band seg-

mentation have estimation errors on the orders of thousands of parts per million.
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For instance, as a result of the transmit filter roll-off, the coarse symbol rate

estimate of a 3 MHz signal can vary between 3 and 3.5 MHz, yielding an estima-

tion error of 1.6 × 105 ppms. As was shown in Chapter 3, the features used for

modulation-type classification degrade under large estimation errors of the cyclic

frequencies. As a result, classification probability cannot be met under such large

offsets. Therefore, coarse estimates cannot be used directly for detection of cyclic

features, and hence fine estimates of the transmit parameters are needed. To

address this issue, our architecture includes symbol rate and carrier frequency

estimation blocks referred to as the pre-processors. We show that there exists

an inherent tradeoff between estimation accuracies of the transmit parameters

and the classification accuracy that can be achieved, which will be analyzed in

Section 4.4.

4.3 Low-Complexity Blind Classification Algorithms

In this section, we present the proposed algorithmic hierarchical classification

tree. The design hierarchy is based on both the level of a priori information

that a block requires and its computational complexity. In particular, the blocks

that do not require a priori information about the signal being classified are

processed first. For instance, the multi-carrier classifier employs a totally blind

low-complexity algorithm, and therefore can be performed first. This design

methodology dictates the order in which the classification algorithms are per-

formed as shown in Fig. 4.1. In the remainder of this section, we describe each

of the blocks of our processor, and specify what design variables need to be op-

timized in order to meet the given accuracy and energy requirements.

Multi-Carrier (MC) OFDM (Orthogonal Frequency Division Multiplexing)

and Single Carrier (SC) signal classification can be performed using a Gaussian-

ity test using the fourth-order cumulant C42 [SLB08]. The property of C42 is

that, it tends to zero if the input samples are approaching Gaussian distribution.
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The C42 statistic of an OFDM signal, as a result, is close to zero since the OFDM

is a mixture of a large number of sub-carrier waveforms. With respect to spread

spectrum classification, one can distinguish between BPSK and direct sequence

spread spectrum (DSSS) signals based on the variance of the signal’s autocorre-

lation at a given lag τ [BBB01]. The focus of this chapter is on the modulation

type estimation. More information about MC/SC and DSSS classification can

be found in [RYU13].

4.3.1 Center Frequency and Symbol Rate Preprocessor

When the signal is classified as an SC signal, its transmit parameters need to be

estimated first. Both the pre-processors and the modulation-type classifier for

SC signals rely on the Cyclic Auto-Correlation (CAC) function to detect their

cyclostationary features. Under a finite number of samples N , the conjugate and

the non-conjugate CACs can be computed respectively as follows:

R̃α
x∗(ν) =

1

N

N−1∑
n=0

x[n]x∗[n− ν]e−j2παnTs , (4.1)

R̃α
x(ν) =

1

N

N−1∑
n=0

x[n]x[n− ν]e−j2παnTs , (4.2)

where ν is the lag variable, Ts is the sampling period, and α is the cyclic fre-

quency to be detected. Note that the conjugate CAC is used to detect cyclic

frequencies close to baseband, whereas the non-conjugate CAC is used to detect

the cyclostationary features at cyclic frequency α related to the carrier frequency.

Different modulation classes can be differentiated via the cyclostationarity test

because their CACs possess cyclic peaks at different locations of cyclic frequen-

cies α, which is a function of the symbol rate (1/T ) and the carrier frequency

(fc).

However, in blind classification scenarios, the estimated cyclic frequencies

might not be equal to true cyclic frequencies. It was shown in 3 that computing
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the CAC at α̂ = (1 + ∆α)α, where α is the true cyclic frequency and ∆α is

the cyclic frequency offset (CFO), results in performance degradation in terms

of the classification accuracy. Therefore, under a non-zero CFO ∆α, increasing

the number of samples (N) does not improve the detection accuracy but instead

degrades the cyclostationary feature. This in turn motivates the need for accurate

estimates of the transmit parameters in order to minimize the CFO ∆α and

improve the performance of the modulation-type classification.

With respect to the symbol rate estimation, we note that all SC modula-

tion classes considered in this work exhibit a cyclostationary feature at cyclic

frequency α = 1/T . Therefore, detecting the presence of this cyclostationary

feature would inherently estimate the symbol rate of the signal. The coarse esti-

mate of the symbol rate from the band segmentation can be used to set the search

window WT , within which the cyclic peak at the symbol rate will be located. The

detection of the cyclostationary feature at 1/T is therefore obtained by solving

the following optimization problem:

max
αi∈WT

∣∣∣∣∣
NT−1∑
n=0

|x[n]|2e−j2παinTs

∣∣∣∣∣ , (4.3)

where NT is the number of samples per CAC computation used to estimate the

signal’s symbol rate.

Given that not all classes have the cyclostationary feature related to their

carrier frequency, the CACs given in (4.2) cannot be directly used to estimate

the signal’s carrier frequency. Estimation of the carrier frequency of the incoming

signal can be performed by detecting the cyclic feature at α = 4fc after squaring

the incoming samples [MM98,CS04]. We denote the search window by Wf within

which the cyclic peak at 4fc occurs. The estimation is therefore obtained by
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solving the following optimization problem:

max
αi∈Wf

∣∣∣∣∣∣
Nf−1∑
n=0

x[n]4e−j2παinTs

∣∣∣∣∣∣ , (4.4)

where Nf is the total number of samples per CAC computation used to estimate

the signal’s carrier frequency. Note that by increasing the number of samples over

which the CAC is computed, the noise is suppressed and the features of interest

become prominent. As a result, both NT and Nf are a function of the SNR of

the received signal.

Solving the optimizations given in (4.3) and (4.4) requires infinite computa-

tional complexity. As a result, the search space for the maximum cyclic feature

has to be discretized. We denote by ∆αT
and ∆αf

the resolutions for the symbol

rate and carrier frequency estimators. As a result, there are two degrees of free-

dom in the design of each of the algorithms: 1) the step size ∆αT
and ∆αf

within

the window WT and Wf respectively, and 2) the number of samples NT and Nf

required for the computation of every CAC at the cyclic frequency αi of interest.

The symbol rate and the carrier frequency estimation algorithms cannot yield

estimation accuracies smaller than their respective step size ∆αT
and ∆αf

.

Also, the number of CAC computations required in (4.3) and (4.4) is equal

to the cardinality of the discretized search windows ST = ⌈WT/∆αT
⌉ and Sf =

⌈Wf/∆αf
⌉ respectively. Given that both estimators use the CAC signal process-

ing kernel, their consumed energy per sample is therefore the same, with the

exception of the energy consumed for squaring the samples which is negligible

compared to the CAC energy consumption. As a result, the total consumed en-

ergy of the pre-processors is proportional to (STNT + SfNf )Ts. The choice of

the design parameters (∆αT
, ∆αf

, NT , Nf ) and their relationship to the required

classification accuracy is explained in Section 4.4.
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Figure 4.3: Classification example of a 5 MHz DSSS signal with underlying BPSK
modulation scheme.

4.3.2 Modulation-Type Classifier

After estimating the signal parameters, the proposed modulation-type classifier

computes the CAC at cyclic frequencies within the union of possible cyclostation-

ary features in Table 2.1, resulting in a a six-dimensional feature vector [RC11b]

given by

F =
[
|R̃1/T

x∗ (0)|, |R̃2fc−1/T
x (0)|, |R̃2fc−1/2T

x (0)|,

|R̃2fc
x (0)|, |R̃2fc+1/2T

x (0)|, |R̃2fc+1/T
x (0)|

]
. (4.5)

Because each element in the feature vector F is proportional to the received

signal power, we normalize the feature vector to unit power, and compare this nor-

malized feature vector F̄ to asymptotic normalized feature vectors V̄i, i ∈ [1, 2, 3],

for each of the classes considered. For instance, the normalized asymptotic fea-

ture vector for signals belonging to Class 1 is V̄1 = [1, 0, 0, 0, 0, 0] as only one
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cyclic feature is present at the signal’s symbol rate.

The resulting normalized feature vector is compared to each feature vector

V̄i, and the classifier picks the modulation class Ĉ whose feature vector is closest

to one of the received signal in the least square sense [RC11b], namely

Ĉ = arg min
i∈[1,2,3]

||F̄− V̄i||2. (4.6)

In contrast to the pre-processors, the only degree of freedom in the design of

the modulation type classifier is the number of samples Nc required to compute

each of the six CACs that form the feature vector. Given SNR of the received

signal and the estimation accuracies of the pre-processors, Nc is chosen accord-

ingly to meet the desired classification probability. As a result of the six CACs

required for classification, the processing time for modulation-type estimation is

equal to 6NcTs. The six CACs are computed sequentially to enable high degree of

hardware reuse without violating the processing time budget and compromising

the total energy consumption.

We would like to note that although the cyclic features that the considered

modulation types exhibit are known and can be used for parameter estimation, an

energy efficient method to estimate the symbol rate and carrier frequency has not

been proposed before. Further, the authors are not aware of any work that ties

the symbol rate and carrier frequency accuracies to the modulation classification

probability. As will be shown in Section 4.5, the pre-processors consume most of

the processor’s energy, and therefore a careful selection of the step sizes for WT

and Wf is necessary to achieve an energy efficient solution.

4.3.3 Example of Classification Flow

We consider the classification of a DSSS signal with an underlying BPSK modula-

tion scheme that is spread with a code of length 8. The DSSS signal has a symbol
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rate of 5 MHz, and is centered at 125 MHz at SNR of 10 dB. After detecting the

presence of the signal in the band segmentation, the CIC filter downconverts the

signal to a center frequency of 16 MHz and decimates it resulting in 4 samples

per symbol. Fig. 4.3 shows the output of each of the algorithms discussed in this

section. In the first block of the classification tree, the C42 cumulant is computed

and compared against a threshold. We show that setting Nm = 90 samples is

sufficient to separate SC and MC classes with a probability of 95%. In this case,

the DSSS signal being a SC signal will be classified as SC, and its transmit pa-

rameters will be computed next using (4.3) and (4.4). Using NT = Nf = 400

samples, the pre-processors estimate the symbol rate and carrier frequency of

the DSSS signal. Using these estimates, the modulation type classifier computes

the normalized feature vector F̄ which is compared to the theoretical normalized

feature vector of BPSK signals plotted in solid lines in Step 4 of Fig. 4.3 for differ-

ent realizations of the feature vector 1. Finally, after being classified as a BPSK

signal, the DSSS classification is performed as given in [RYU13]. Note that the

design variables in this example are selected so that the estimation accuracies of

the pre-processors are on the order of 100 ppm. However, such small estimation

accuracies might not be required to meet the desired classification accuracy. The

aim of the next section is to analyze the maximum tolerable estimation accuracies

in order to minimize the total consumed energy and processing time.

4.4 Energy Minimization Methodology

In this section, we proceed with the optimization of the design parameters in order

to minimize the total consumed energy while meeting the desired classification

probability.

In order to minimize the consumed energy, we split the signal processing

1We only require one realization of the feature vector to perform modulation-type classifi-
cation, but the average detection performance is computed using multiple realizations of the
feature vector
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Figure 4.4: Proposed processor showing dependent blocks in gray and their design
variables to be optimized.

blocks into dependent blocks, whose design variables are a function of the output

of previous signal processing stages, and independent blocks, whose design vari-

ables can be set independently of the output of other blocks. For instance, the

design variables of both the multi-carrier and DSSS classifiers do not depend on

the output of any other stage in the classification, and are therefore labeled as

independent blocks. On the other hand, the modulation type classifier block re-

lies on the outputs of the pre-processors, and the choice of the number of samples

spent for modulation type classification Nc is tightly related to the estimation

accuracies of the transmit parameters. These blocks are therefore labeled as de-

pendent. It is clear that the independent blocks consume a fixed amount of energy

regardless of the other blocks, and therefore are not jointly optimized with the

rest of the blocks. On the other hand, a joint optimization of the total consumed

energy of the dependent blocks is possible. A summary of the dependent and

independent blocks and their respective design variables are depicted in Fig. 4.4.

4.4.1 Energy Optimization of Dependent Blocks

In order to optimize the energy consumption of the proposed pre-processor and

classifier, we note that all three blocks make use of the CAC statistic in (4.2).

Thus, minimizing the total number of samples spent for classification is equivalent

to minimizing the total consumed energy. Note that minimizing the total number

of samples is also equivalent to minimizing the processing time given by (6Nc +
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STNT + SfNf )Ts, where ST = ⌈WT/∆αT
⌉ and Sf = ⌈Wf/∆αf

⌉. The search

windows WT and Wf are obtained from the band segmentation and are SNR

dependent, and are therefore not optimized. Similarly, the number of samples

per CAC computation NT and Nf are also SNR dependent since they are the

minimum required number of samples to push the noise level below the feature

to be detected. At SNR of 10 dB, NT = Nf = 320 samples are required to

correctly estimate the symbol rate and carrier frequency. Therefore, the only

variables to optimize over are Nc, ST , and Sf , which in turn is equivalent to

optimizing over Nc,∆αT
, and ∆αf

.

The objective function that minimizes the total consumed energy can there-

fore be formulated as follows

min
Nc,ST ,Sf

6Nc + STNT + SfNf

such that P(Ĉ = i | ∆αf
,∆αT

, Nc, C = i) ≥ 0.95

∀i ∈ [1, 2, 3]. (4.7)

It is important to note that the result of the optimization problem (4.7) is

a function of the coarse estimate windows WT and Wf . In fact, the wider the

windows are, the larger the number of CAC computations ST and Sf are required

for a given step size ∆αT
and ∆αf

, respectively. Therefore, the optimum choice

of the design variables is inherently tied to the coarse estimation accuracy from

the band segmentation. Next, we study the tradeoffs between the symbol rate

and carrier frequency estimation errors under a given probability of classification

constraint. We show that there exists a region of pre-processor (∆αT
,∆αf

) pairs

that satisfy the classification probability requirement.
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Figure 4.5: Probability of correct classification of M-QAM signals as a function
of number of samples for different cyclic frequency offsets at SNR of 10 dB.

4.4.2 Tradeoffs Between Pre-Processor Accuracies

Given that signals belonging to Class 1 only exhibit a cyclostationary feature

at their symbol rates, the requirement for the maximum tolerable ∆αT
is deter-

mined by signals belonging to this class. The classification accuracy for Class

1 signals is shown in Fig. 4.5 as a function of the number of samples used for

classification under different ∆αT
values. It can be seen that the classification

accuracy of QAM signals is below the desired probability of 0.95 under CFO ∆αT

greater than 1000 ppm at SNR of 10 dB even when the number of samples is

increased. We refer to the SNR-dependent maximum tolerable cyclic frequency

offset as ∆maxαT
. At SNR of 10 dB, ∆maxαT

=1000 ppm. Therefore, as long as

the symbol rate estimator guarantees an accuracy less than 1000 ppm, signals

belonging to Class 1 can meet the required classification accuracy. Further, since

the cyclostationary feature at the symbol rate is the weakest among all cyclosta-

tionary features [Gar88], it requires the most number of samples to be detected.

Therefore, the number of samples spent during classification Nc is determined by

signals of Class 1 for every ∆αT
≤ ∆maxαT

.
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The accuracy of the carrier frequency estimation error ∆αf
is determined by

the modulations that exhibit a cyclostationary feature at the carrier frequency,

namely signals belonging to Class 2 and 3. However, unlike the accuracy re-

quirement for the symbol-rate estimate which is governed by signals belonging to

Class 1, ∆αf
has to be jointly determined for every ∆αT

≤ ∆maxαT
. As a result,

for every ∆αT
≤ ∆maxαT

that guarantees proper classification of Class 1 signals,

there exists a maximum estimation error ∆maxαf
that can be tolerated by Class

2 and 3 signals. Therefore, in order to understand the tradeoffs between the

accuracies of both pre-processors, we obtain the feasible region in the (∆αT
,∆αf

)

coordinate system under which the classification accuracy for all classes is met.

For every ∆αT
≤ ∆maxαT

and Nc that meet the classification accuracy of

Class 1 signals, the maximum tolerable CFO ∆maxαf
is the result of the following

optimization:

(∆maxαf
| Nc,∆αT

) = max ∆αf

such that P(Ĉ = i | ∆αf
,∆αT

, Nc, C = i) ≥ 0.95, (4.8)

where C is the correct class to which the received signal belongs to, and i ∈ [2, 3].

Therefore, for every ∆αT
≤ ∆maxαT

, there exists a maximum ∆maxαf
under which

classification requirement of 95% is met.

This tradeoff among different set of triplets is illustrated in Fig. 4.6 for SNR

of 10 dB. We note the tradeoff between accuracies of the two pre-processors, and

their respective impact on Nc. It turns out that setting a stricter requirement on

the symbol-rate estimator relaxes the required accuracy of the carrier frequency

estimator. As expected, changing ∆αT
results in different number of samples

required for classification as discussed earlier. It is important to note that the

tradeoff saturates after a certain point. In fact, spending more energy in the

symbol rate estimator to push ∆αT
below 700 ppm does not result in a relaxation

of the carrier frequency estimator requirement. As a result, the cyclostationary
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Figure 4.6: Tradeoff between the symbol rate estimator and carrier frequency
estimator accuracies at SNR of 10 dB in order to meet a classification probability
of 0.95 for all classes with the corresponding number of samples.

features at a function of the carrier frequency cannot be detected reliably with

an offset larger than 5400 ppm at SNR of 10 dB. In addition, the maximum

tolerable estimation accuracy for the carrier frequency ∆αf
given the accuracy of

the symbol rate estimation ∆αT
is denoted in Fig. 4.6 by markers. From an energy

point of view, for a given ∆αT
and the corresponding Nc samples spent in the

modulation classification, setting ∆αf
= ∆maxαf

minimizes the total consumed

energy of the pre-processor. Therefore, although there exists an infinite number

of (∆αT
,∆αf

, Nc) triplets that meet the required classification probability, the

most energy-efficient triplets lie on the boundary of the feasible region shown in

Fig. 4.6.

4.5 Design Verification

This section discusses the Simulink-based functional verification of the proposed

processor. We then use the power estimates from synthesized RTL code to com-

pute the total consumed energy of the processor at a SNR of 10 dB.
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4.5.1 Simulink Design Environment

We have developed a Simulink-level experiment to run Monte-Carlo simulations

in order to verify the functionality of the proposed processor, the hierarchy of

which is similar to the one shown in Fig. 4.1. This processor is connected to the

emulated RF front-end and band segmentation, which digitizes and senses the 500

MHz wide spectrum respectively. Each of the signal processing kernels has been

implemented using Simulink embedded functions which effectively proves the low

algorithmic complexity of our implementation. The Simulink design environment

was used to test different signal types under different scenarios. Further, the

Simulink environment is used to generate test vectors for testing the RTL code

as well as demonstrate the functionality of the different algorithms that compose

the processor.

4.5.2 Total Processing Time and Consumed Energy

The proposed processor was implemented in a 40-nm CMOS technology [RYU13],

and consumes 10 mW at 500 MHz from a supply voltage of 0.9 V, which is equiv-

alent to 20 pJ/sample. Substituting this number into the proposed tradeoff anal-

ysis framework, the energy consumed by the pre-processor and the modulation-

type classifier is computed as

ET (Nc,∆αT
,∆αf

) = 20(6Nc + STNT + SfNf ) pJ.

In order to solve the optimization (4.7) and obtain the consumed energy of

the pre-processor and modulation-type classifier, we use values of WT and Wf

that correspond to the band segmentation processor [YSR11]. We implemented

the band segmentation in [YSR11] and obtained coarse estimate windows for

both the symbol rate and carrier frequency at SNR of 10 dB, given by WT =

150 KHz, and Wf = 260 KHz respectively. To illustrate the benefits of energy
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Figure 4.7: Combined energy consumed by the pre-processor and modulation
type classifier at different (Nc,∆αT

,∆αf
) in the feasible region with a consumed

energy of 20 pJ per sample.

minimization across the design space composed of the triplets (Nc,∆αT
,∆αf

), we

compute the total energy for some of the triplets in the feasible region. Given the

energy of 20 pJ per sample consumed by the proposed processor, we compute the

energy spent by the pre-processor and the modulation-type classifier for a range

of (Nc,∆αT
,∆αf

) triplet. We show in Fig. 4.7 the combined consumed energy

of the pre-processor and modulation type classifier at SNR of 10 dB. It can be

seen that the triplets that lie on the boundary of the feasible region consume the

minimum amount of energy of 10.3 µJ, as compared to 24.9 µJ and 59.5 µJ for

example if more processing time is spent on either of the two pre-processors. It

is worth noting that the reason why there doesn’t exist a unique optimum point

for the optimization is because the 6Nc term in (4.7) is negligible compared to

the other two terms, and therefore, there exists a range of Nc values for which

the objective function is minimized.

At a clock rate of 500 MHz, the proposed processor can meet the classification

requirement of 95% while consuming a total of 10.37 µJ, and a processing time

of around 1 ms, meeting both energy and processing time requirements given

in Table 4.1. Further, it is worth noting that the energy consumed by the pre-
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processor and modulation type classifier constitute 99.33% of the total consumed

energy which validates our reasoning behind optimizing the dependent blocks.

Note that the proposed classifier can also perform non-blind signal classification,

if the transmit parameters are known and stored in the signal database. In such

an application, the total consumed energy and processing times drop dramatically

to around 71 nJ and 8 µs, respectively.

4.6 Summary

A low-complexity blind modulation classification processor that operates without

the knowledge of any of the parameters of the signal being processed is presented.

The processor is composed of low-complexity hierarchical signal processing ker-

nels that can classify single-carrier and multi-carrier signals. With respect to

single-carrier signals, increasing the processing time during the modulation type

classification does not necessarily increase the classification probability under

large parameter estimation errors. As a part of the design strategies, the trade-

offs between the pre-processor and modulation type classifier are analyzed, and

an optimization framework is formulated to minimize the total consumed energy

and processing time.
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CHAPTER 5

Spectrum Sensing under RF Non-Linearities:

Performance Analysis and DSP-Enhanced

Receivers

Intermodulation products arise as a result of low noise amplifier (LNA) and mixer

non-linearities in wideband receivers. In the presence of strong blockers, the in-

termodulation distortion can deteriorate the spectrum sensing performance by

causing false alarms and degrading the detection probability. We theoretically

analyze the impact of third-order non-linearities on the detection and false alarm

probabilities for both energy detectors and cyclostationary detectors under front-

end LNA non-linearities. We show that degradation of the detection performance

due to nonlinearities of both energy and cyclostationary detection is strongly

dependent on the modulation type of the blockers. We then propose two DSP-

enhanced receiver architectures to compensate for the impact of nonlinearities.

The first approach is a post-processing technique which compensates for nonlin-

earities effect on the test statistic by adapting the sensing time and detection

threshold. The second approach is a pre-processing method that compensates by

correcting received samples prior to computing the test statistic. This approach

is based on adaptively estimating the intermodulation distortion, weighting it by

a scalar constant and subtracting it from the subband of interest. We propose a

method to adaptively compute the optimal weighting coefficient and show that

it depends on the power and modulation of the blockers. Our results show that

the pre-processing sample-based compensation method is more effective, and that
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clear dynamic range extension can be obtained by using intermodulation compen-

sation without resorting to increasing the sensing time. We also study the impact

of uncertainties about the knowledge or estimates for nonlinearity parameters.

We describe in Section 5.1 the system model and formulate the wideband

sensing problem in the presence of nonlinearities. In Section 5.2, we derive their

theoretical probabilities of false alarm and detection under a finite number of

samples for a given blocker power, SNR, and modulation types. We present in

Section 5.3 the RF-aware spectrum sensing architecture and algorithm. Section

5.4 describes the adaptive method for computing the optimal cancellation coeffi-

cient for the pre-processing compensation method.

5.1 System Model

In the presence of strong inband signals, wideband sensing receivers might op-

erate in a regime where the RF front-end components such as the LNA might

saturate thus exhibiting a non-linear behavior. As a result, spurious frequen-

cies in the form of harmonics, intermodulation (IM) and crossmodulation (XM)

are generated [gha11,Raz10]. In this chapter, we consider third-order LNA non-

linearities since even-order non-linearities result in IM distortion (IMD) terms

outside the frequency support of wideband channel being sensed, and therefore

can be efficiently filtered. Furthermore, third-order distortion typically dominates

over fifth-order distortion. As a result of the third-order non-linearities, the pres-

ence of strong signals in the wideband spectrum could produce IMD terms that

affect the detection performance in other subbands where weaker signals may

reside [Raz10]. Under such scenarios, the detection performance might be de-

graded, causing the CR network to either cause harmful interference to the PU,

or to miss the opportunity to transmit in a vacant subband.

We consider the problem of receiver front-end non-linearity in the sensing of

a wideband spectrum which is downconverted to baseband and digitized. Then,
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digital filtering is performed for the subband of interest, located in the general case

at complex intermediate frequency (IF), and the resulting I/Q samples are fed to

the detector to perform spectrum sensing. The non-linearity in the sensing front-

end results in the generation of intermodulation terms. The odd-order non-linear

terms are only considered for the modeling of the RF front-end non-linearity as

the spurious frequency components that are generated by the even-order terms,

i.e harmonics and inter/cross-modulation terms, are assumed to be outside of the

overall digitized wideband spectrum [gha11]. Moreover, the non-linearity in the

front-end is assumed to be mild and therefore is modeled with a cubic term. As

a result, the baseband equivalent of the wideband signal ywb[n] at the output of

the non-linear front-end can be described as [ZMS09]

ywb[n] = β1xwb[n] + β3xwb[n]|xwb[n]|2 + wwb[n], (5.1)

where β1, β3 are characteristics of the sensing Rx front-end, xwb[n] is the received

baseband equivalent wideband signal using a linear front-end, and wwb[n] is the

additive white Gaussian noise. The values for β1, β3 are related to the amplitude

AIP3 of the signal at third-order intercept point through the following expression

[ZMS09]

AIP3 =

√
4|β1|
3|β3|

. (5.2)

The power of the input signal in dBm at the third-order intercept point (IIP3) is

related to AIP3 as follows [ZMS09]

PIP3 = 20 log10AIP3 + 10[ dBm].

The IIP3 of a given receiver is defined as the input power for which the output

power of the linear term equals that of the cubic term due the the third-order non-

linearity. Under an example IIP3 of -10 dBm, and a linear gain of 35 dB [Raz98],
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the coefficients β1 and β3 are given as follows

β1 = 1035/20 ≃ 56.23, β3 = − 4β1
3A2

IP3

= −7497.33. (5.3)

As a result of the third-order non-linearity, the third-order intermodulation

term of any two relatively strong signals also known as blockers in this context,

located at fb1 and fb2 will fall in the subband of interest centered at fc if 2fb1 ±

fb2 = fc or 2fb2 ± fb1 = fc. We let the SOI have a bandwidth of B Hz, and

consider a receiver with an example noise figure of 4 dB. As a result, the thermal

noise floor within the SOI bandwidth, referenced to the receiver input, it is given

by

−174 dBm/Hz + 10 log10(B) + 4 dB [dBm]. (5.4)

In the remainder of this chapter, we consider a total receiver bandwidth of Bwb =

500 MHz [RYU13], and a signal bandwidth of B = 10 MHz, resulting in a thermal

noise floor in the subband of interest of −100 dBm as can be calculated using

(5.4).

Then, we focus on the baseband representations of such a scenario in a given

subband of interest after downconversion to an intermediate frequency fIF and

digital filtering. After downconversion, the blockers are located at f1 and f2 such

that 2f2 − f1 = fIF . In the example of single pair of blockers, it was shown

in [ZMS09] that the signal in the subband of interest is given by

y[n]≈
(
β1z0[n] +

3β3
2
z∗1 [n]z

2
2 [n]

)
ej2πfIFnTs + wz[n], (5.5)

where Ts is the sampling period, z0[n] is the baseband version of signal of in-

terest (SOI), z1[n] and z2[n] are the baseband representations of the blockers

whose third-order IMD term falls in the subband of interest at center frequency

fIF = 2f2 − f1. The center frequency of the subband of interest after RF
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I/Q downconversion is denoted by fIF and Ts is the sampling period. Finally,

wz[n] is the complex bandpass Gaussian additive noise in the subband of inter-

est. It should be noted that in this model the assumption is that the blockers

are orders of magnitude stronger than SOI, i.e. E[|z0[n]|2] ≪ E[|z2[n]|2] and

E[|z0[n]|2] ≪ E[|z1[n]|2]. Therefore, the additional IMD terms around fIF gen-

erated by the SOI and one blocker in the form of z0[n]|z1[n]|2 as well as the

self-interference IMD term generated by the SOI in the form of z0[n]|z0[n]|2 are

negligible compared to the IMD terms of the blocker pairs. We next define the

Signal to Noise Ratio (SNR) after the LNA with respect to the SOI as

SNR = 10 log10

(
E[β2

1 |z0[n]|2]
E[|wz[n]|2]

)
[dB], (5.6)

where E[·] is the statistical expectation operation. Further, we assume for sim-

plicity that both blockers have the same power, i.e. E[|z1[n]|2] = E[|z2[n]|2], and

define the Signal to Blocker Ratio (SBR) as

SBR = 10 log10

(
E[|z0[n]|2]
E[|z1[n]|2]

)
[dB]. (5.7)

In addition, as a result of the LNA non-linearity, the blockers incur self-

interference. This will be discussed in more details in Section 5.4. One illustrative

example of the power spectrum density (PSD) of a two blocker case for a Rx

front-end with finite IIP3 is depicted in Fig. 5.1.

The goal of the CR is to detect the presence of the weak SOI z0[n] in the

presence of noise and strong blockers when 2f2 − f1 = fIF . The filtered signal at

complex IF under both hypotheses is then given as follows

y[n]=


3β3
2
z∗1 [n]z

2
2 [n]e

j2πfIFnTs + wz[n], under H0

(
β1z0[n] +

3β3
2
z∗1 [n]z

2
2 [n]
)
ej2πfIFnTs + wz[n],under H1.

(5.8)
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Wideband 

LO

ADC

LPF

SOI

BPF

LNA

Figure 5.1: Wideband spectrum at the input and output of the non-linear front
end showing the blockers self-interference, and the interference on the SOI caused
by the IMD components (marked in red) that are generated by two blockers as
the result of third-order non-linearity in the receiver front-end. In this example
RF blockers are around frequencies fb1 and fb2. The SOI is around frequency
fc = 2fb2 − fb1.

Assuming the previous effective receiver input noise floor of −100 dBm including

the receiver noise figure, and the target SNR of 5 dB for instance, the SOI power

level at receiver input is −95 dBm. Then if the blockers are e.g. 60 dB more

powerful (i.e. SBR = −60 dB), they appear at −35 dBm at receiver input. With

the assumed −10 dBm receiver IIP3 figure, the third-order intermodulation is

then 2× 25(dB) = 50 dB below the blocker’s power at the LNA output [Raz10].

But since the SOI is 60 dB below the blocker levels, the third-order IMD due to

blockers at the SOI subband is actually 10dB stronger than the SOI itself. This

example shows the challenging nature of the non-linear distortion with wideband

receivers, and is quantified in detail in the following analysis in terms of proba-

bility of detection and false alarm.
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5.2 Deriving the False Alarm and Detection Probabilities

under Non-Linear Front-Ends

In this section, we derive the false alarm and detection probabilities of both ED

and CD in closed form while taking into account the nonlinear behavior of the

front-end. As was mentioned earlier, [RSV13] was the first paper to show the

performance of ED and CD under nonlinear front-ends by simulations. However,

deriving the analytical expression for Pd and Pfa are necessary to understand

the impact of the different system parameters including the blockers’ modulation

type on the detection performance.

Note that since the test statistic under energy detection is a special case

of the CAC, we will derive the second-order moments for both conjugate and

non-conjugate CACs, which covers all possible detectors considered in this work.

Given that signal, IMD term, and noise are all mutually statistically independent,

the CAC of the received signal y[n] is equivalent to the sum of the CAC of each

of the components. As a result, we first derive the second-order statistics of the

CAC under noise only, signal only, and IMD term only scenarios, respectively,

and add their moments to obtain the distribution of the test statistic.

5.2.1 Noise-Only Case

We let the complex bandpass filter applied to ywb[n] for subband selection be

denoted by h[n] and composed of Ltaps taps with unit power, i.e.
∑Ltaps

ℓ=1 |h[ℓ]|2 =

1. We define the following variables σ2
nc , E[w2

wb], σ
2
c , E[|wwb|2].

When the lag ν ≥ Ltaps, E
[
wz[n]wz[n− ν]

]
= E

[
wz[n]

]
E
[
wz[n− ν

]
= 0. As a

result, the mean of both conjugate and non-conjugate CAC under a lag ν ≥ Ltaps
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is equal to zero. By letting I(x) = 1 if x ≥ 1 and zero otherwise, we obtain then


µαn(N, ν) = E[Rα

wz
(ν)] = σ2

nc sin(NπαTs)
N sin(παTs)

× I(Ltaps − ν)
∑Ltaps−ν

ℓ=1 h[ℓ]h[ν + ℓ],

µαn∗(N, ν) = E[Rα
w∗

z
(ν)] = σ2

c sin(NπαTs)
N sin(παTs)

× I(Ltaps − ν)
∑Ltaps−ν

ℓ=1 h∗[ℓ]h[ν + ℓ].

If the noise samples before filtering are proper complex Gaussian distributed,

then σ2
nc = 0. We define καn(N, ν) = E[|Rα

wz
(ν)|2] and καn∗(N, ν) = E[|Rα

wz
∗(ν)|2].

The power of the non-conjugate CAC can then be found as follows

|Rα
w(ν)|2 =

1

N2

N−1∑
n1=0

N−1∑
n2=0

Ltaps∑
l1=1,
t1=1

Ltaps∑
l2=1,
t2=1

h[l1]h[t1]h
∗[l2]h

∗[t2]wwb[n1 − l1]wwb[n1 − ν − t1]×

w∗
wb[n2 − l2]w

∗
wb[n2 − ν − t2]e

j2πα(n1−n2)Ts , (5.9)

where we refer to a summation with two indices as a double summation. The sec-

ond moment καn(N, ν) is obtained by taking the expectation of the above expres-

sion, where we note that E
[
wwb[n1− l1]wwb[n1−ν−t1]w∗

wb[n2− l2]w∗
wb[n2−ν−t2]

]
can take three distinct values, given as follows

E
[
wwb[ℓ1]u[ℓ2]w

∗
wb[ℓ3]w

∗
wb[ℓ4]

]
=


E[|wwb|4] = 2σ4

c if ℓ1 = ℓ2 = ℓ3 = ℓ4

E[|wwb|2]2 = σ4
c if ℓ1 = ℓ2, ℓ3 = ℓ4 ̸= ℓ1∣∣E[w2

wb]
∣∣2 = |σnc|4 if ℓ1 = ℓ3, ℓ2 = ℓ4 ̸= ℓ1

(5.10)

Similar steps can be taken to derive καn∗(N, ν), where the same three distinct

expectations arise.

5.2.2 Signal-Only Case

Let ak denote the modulating symbols of the signal of interest, and let L denote

the oversampling ratio T/Ts, where T is the symbol period. Further, let’s denote
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by p[·] the sampled pulse shaping filter. The SOI is therefore given by β1z0[n] =

β1
∑∞

k=−∞ akp[n− kL]. As a result, the CAC under the signal-only case is given

by

Rα
z0
(ν) =

β2
1

N

N−1∑
n=0

∞∑
k1=−∞
k2=−∞

ak1ak2p[n− k1L]p[n− ν − k2L]× ej2π(2fIF−α)nTse−j2πνfIFTs .

(5.11)

For notation convenience, we denote

pνk(n) , p[n− ν − kL]. (5.12)

Given that consecutive information symbols are independent, the mean of the

non-conjugate CAC is therefore given by

µαs (N, ν) = E[Rα
z0
(ν)] =

β2
1

N

N−1∑
n=0

∞∑
k=−∞

A(2,0)p
0
k(n)p

ν
k(n)e

j2π(2fIF−α)nTse−j2πνfIFTs ,

(5.13)

where A(i,j) , E[aik(a∗k)j]. Similarly, the mean of the conjugate CAC is given by

µαs∗(N, ν) = E[Rα
z0∗(ν)] =

β2
1

N

N−1∑
n=0

∞∑
k=−∞

A(1,1)p
0
k(n)p

ν
k(n)e

−j2παnTsej2πνfIFTs , (5.14)

By expanding |Rα
z0
(ν)|2, the term consisting of the information symbols is formed

of a2ka
∗2
l . When k ̸= l, E

[
a2ka

∗2
l

]
= A20A

∗
20 as different information symbols are

statistically independent. Similarly, when k = l, E
[
a2ka

∗2
l

]
= A22. As a result,
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the second-order moment of the non-conjugate CAC can be expanded as

καs (N, ν) = E[|Rα
z0
(ν)|2] = β4

1

N2

N−1∑
n1=0
n2=0

 ∞∑
k=−∞
l ̸=k

|A(2,0)|2p0k(n1)p
ν
k1
(n1)p

0
l (n2)p

ν
l (n2)+

∞∑
k=−∞

A(2,2)p
0
k(n1)p

ν
k(n1)p

0
k(n2)p

ν
k(n2)

]
ej2π(2fIF−α)(n1−n2)Ts , (5.15)

Similarly, the same result can be derived for the conjugate CAC, and is given by

καs∗(N, ν) = E[|Rα
z0∗(ν)|

2] =
β4
1

N2

N−1∑
n1=0
n2=0

 ∞∑
k=−∞
l ̸=k

|A(1,1)|2p0k(n1)p
ν
k1
(n1)p

0
l (n2)p

ν
l (n2)+

∞∑
k=−∞

A(2,2)p
0
k(n1)p

ν
k(n1)p

0
k(n2)p

ν
k(n2)

]
e−j2πα(n1−n2)Ts . (5.16)

5.2.3 IMD Term-Only Case

Let bk and ck denote the modulating symbols of z1[·] and z2[·] respectively. We

define β̄3 , 3
2
β3. For simplicity, we assume that the blockers and SOI use the

same transmit pulse shaping filter p[n]. However, the theoretical analysis holds

for any pulse shaping filter. The noiseless representation of the blocker-only signal

is given by

zimd[n] ,β̄3z∗1 [n]z22 [n]ej2πfIFnTs

=β̄3

∞∑
k=−∞

b∗kp[n− kL]×

(
∞∑

l=−∞

clp[n− lT ]

)2

ej2πfIFnTs (5.17)
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It can now be shown that the mean of the conjugate and non-conjugate CAC of

the zimd[·] are given by

µαb (N, ν) = E[Rα
zimd

(ν)] =
β̄2
3

N

N−1∑
n=0

∞∑
k=−∞

B∗
(2,0)p

0
k(n)p

ν
k(n)× ∞∑

u1=−∞
u2 ̸=u1

C2
(2,0)p

0
u1
(n)2pνu2(n)

2 +
∞∑

l=−∞

C(4,0)p
0
l (n)

2pνl (n)
2

× ej2π(2fIF−α)nTse−j2πνfIFTs ,

(5.18)

µαb∗(N, ν) = E[Rα
z (ν)] =

β̄2
3

N

N−1∑
n=0

∞∑
k=−∞

B(1,1)p
0
k(n)p

ν
k(n)× ∞∑

u1=−∞
u2 ̸=u1

C2
(1,1)p

0
u1
(n)2pνu2(n)

2 +
∞∑

l=−∞

C(2,2)p
0
l (n)

2pνl (n)
2

× e−j2παnTsej2πνfIFTs ,

(5.19)

where B(i,j) , E[bik(b∗k)j], and C(i,j) , E[cil(c∗l )j]. The second-order moment of the

CAC can then be obtained as follows

καb (N, ν) = E[|Rα
zimd

(ν)|2] = β̄4
3

N2

N−1∑
n1=0

N−1∑
n2=0

[
∞∑

k=−∞

∞∑
l=−∞

E[b2kb∗2l ]p0k(n1)p
ν
k(n1)×

p0l (n2)p
ν
l (n2)

]
×

[
∞∑

u1=−∞

∞∑
u2=−∞

∞∑
q1=−∞

∞∑
q2=−∞

E[c2u1c
2
u2
c∗2q1 c

∗2
q2
]×

p0u1(n1)
2pνu2(n1)

2p0q1(n2)
2pνq2(n2)

2

]
×

ej2π(2fIF−α)(n1−n2)Ts , (5.20)
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where

E[b2kb∗2l ] =


B(2,2) if k = l,

|B(2,0)|2 if k ≠ l,

(5.21)

E[c2u1c
2
u2
c∗2q1 c

∗2
q2
] =



C(4,4) if u1 = u2 = q1 = q2,

|C(4,0)|2 if u1 = u2, q1 = q2,

C(4,0)C
2
(0,2) if u1 = u2 ̸= q1, q1 ̸= q2,

C∗
(4,0)C

∗2
(0,2) if q1 = q2 ̸= u1, u1 ̸= u2,

C2
(2,2) if u1 = q1, u2 = q2, or u1 = q2, u2 = q1,

C(2,0)C(2,4) if u1 ̸= q1, q1 = u2 = q2, or u2 ̸= u1, u1 = q1 = q2,

C∗
(2,0)C

∗
(2,4) if q1 ̸= u1, u1 = u2 = q2, or q2 ̸= u1, u1 = u2 = q1,

C(2,2)|C(2,0)|2 if u1 = q2 ̸= q1, q1 ̸= u2, or u1 = q1 ̸= q2, q2 ̸= u2,

or u2 = q2 ̸= q1, q1 ̸= u1, or u2 = q1 ̸= q2, q2 ̸= u1,

|C(2,0)|4 if u1 ̸= u2 ̸= q1 ̸= q2,

0 otherwise

(5.22)

Similarly, the second order moment of the conjugate CAC is given by

καb∗(N, ν) = E[|Rα
zimd

∗(ν)|2] =
β̄4
3

N2

N−1∑
n1=0

N−1∑
n2=0

[
∞∑

k=−∞

∞∑
l=−∞

E[|bk|2|bl|2]p0k(n1)p
ν
k(n1)×

p0l (n2)p
ν
l (n2)

]
×

[
∞∑

u1=−∞

∞∑
u2=−∞

∞∑
q1=−∞

∞∑
q2=−∞

E[c2u1c
∗2
u2
c2q1c

∗2
q2
]×

p0u1(n1)
2pνu2(n1)

2p0q1(n2)
2pνq2(n2)

2

]
× e−j2πα(n1−n2)Ts , (5.23)
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where

E[|bk|2|bl|2] =


B(2,2) if k = l,

B2
(1,1) if k ̸= l,

(5.24)

and where E[c2u1c
∗2
u2
c2q1c

∗2
q2
] can be found using the same conditions as in (5.22).

5.2.4 Theoretical Distribution of Conjugate and Non-Conjugate CAC

To our best knowledge, no analytical expressions for predicting the false alarm

and detection probabilities under nonlinear front-ends have been published yet.

Given the above theoretical second-order moments of the signal of interest, noise,

and IMD term, we now find the analytical distribution of the actual test statistics

used in energy and cyclostationary detectors under both H0 and H1. As the

noise, signal of interest, and IMD term are mutually independent, their means

and variances will add up, resulting in the following results for C-CAC and NC-

CAC detectors under H0, where y refers to the received signal in (5.8)

NC-CAC


µαy (N, ν,H0) = E[Rα

y (ν)|H0] = µαb (N, ν) + µαn(N, ν)

καy (N, ν,H0) = Var(Rα
y (ν)|H0) = καb (N, ν)

−|µαb (N, ν)|2 + καn(N, ν)− |µαn(N, ν)|2.

C-CAC


µαy∗(N, ν,H0) = E[Ry∗α(ν)|H0] = µαb∗(N, ν) + µαn∗(N, ν)

καy∗(N, ν,H0) = Var(Rα
y∗(ν)|H0) = καb∗(N, ν)

−|µαb∗(N, ν)|2 + καn∗(N, ν)− |µαn∗(N, ν)|2.

Similarly, the second-order moments of the NC-CAC and C-CAC under H1
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are given by

NC-CAC


µαy (N, ν,H1) = E[Rα

y (ν)|H0] = µαs (N, ν) + µαb (N, ν) + µαn(N, ν)

καy (N, ν,H1) = Var(Rα
y (ν)|H0) = καs (N, ν)− |µαs (N, ν)|2 + καb (N, ν)

−|µαb (N, ν)|2 + καn(N, ν)− |µαn(N, ν)|2.

C-CAC


µαy∗(N, ν,H1) = E[Ry∗α(ν)|H0] = µαs∗(N, ν) + µαb∗(N, ν) + µαn∗(N, ν)

καy∗(N, ν,H1) = Var(Rα
y∗(ν)|H0) = καs∗(N, ν)− |µαs∗(N, ν)|2 + καb∗(N, ν)

−|µαb∗(N, ν)|2 + καn∗(N, ν)− |µαn∗(N, ν)|2.

Further, using the central limit theorem for sufficiently large N , the dis-

tribution of the test statistics Rα
y (ν) and Rα

y∗(ν) tend to Gaussian distribu-

tions asymptotically with increasing number of samples N . As a result, given

that the test statistics are both non-zero mean, |Rα
y (ν)| and |Rα

y∗(ν)| will be

both Ricean distributed. Letting ψiy(N, ν) =
√

|µαy (N, ν,Hi)|2, and ψiy∗(N, ν) =√
|µαy∗(N, ν,Hi)|2 for i ∈ [0, 1], the probability of detection and false alarm are

given by

NC-CAC


P nc
fa (γnc) = Q1(

ψ0
y(N,ν)√

0.5καy (N,ν,H0)
, γnc√

0.5καy (N,ν,H0)
),

P nc
d (γcd) = Q1(

ψ1
y(N,ν)√

0.5καy (N,ν,H1)
, γnc√

0.5καy (N,ν,H1)
),

(5.25)

C-CAC


P c
fa(γc) = Q1(

ψ0
y∗ (N,ν)√

0.5κα
y∗ (N,ν,H0)

, γc√
0.5κα

y∗ (N,ν,H0)
),

P c
d (γc) = Q1(

ψ1
y∗ (N,ν)√

0.5κα
y∗ (N,ν,H1)

, γc√
0.5κα

y∗ (N,ν,H1)
),

(5.26)

where Q1(·, ·) is the first-order Marcum Q function, and where the superscripts

nc and c stand for non-conjugate and conjugate respectively. Further, Eq. (5.25)

and (5.26) can be used to theoretically find the detection thresholds γnc and γnc

to operate at a given desired false alarm rate for any given sensing time N .

Resulting from the dependency of the second-order moments of the statistic of

the IMD term on high order statistics of the blockers as shown in (5.22), the false
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alarm and detection probabilities of both energy and cyclostationary detectors,

are dependent on the blockers’ modulation types as will be shown in Section

5.5. In the following section, we show how the derived false alarm and detection

probabilities are utilized to design our proposed RF-aware detector which takes

into account the presence of blockers in the wideband spectrum to adapt the

detection threshold and sensing time.

5.3 Nonlinearity Compensation Based on Sensing Time

Adaptation and Threshold Setting

Spectrum sensing is performed by computing the C-CAC or NC-CAC, and by

comparing it to a detection threshold. Setting the detection threshold is vital

to selecting the operating point on the receiver operating characteristic (ROC)

curve, and is therefore of great importance. As shown in Section 5.2, the mean and

variance of the CAC of the IMD term zimd[n] are dependent on the β3 parameter,

and on higher order moments of the blockers’ symbols. Estimating the blockers’

higher order moments can be achieved by 1) estimating the blockers’ power,

and 2) the blockers’ modulation type. Given the blockers’ modulation types, the

blockers’ high order moments can be found by just knowing the blockers’ strength.

Unlike the case of adjacent channel interference (ACI) where the threshold setting

to perform at a given false alarm rate is only a function of the blocker strength

[YSR11], the proposed RF-aware detector shown in Fig. 5.2 also requires the

knowledge of the blockers’ modulation types.

When the blockers’ modulation types are unknown, blind modulation classi-

fication can be performed under high SNR of the blocker [SS00,DAB05,RYU13].

As RF-aware detectors only require classifying very strong blockers with very

large SNR levels, estimating both the blockers’ powers and modulation types can

be performed within a short sensing time.

Stemming from the earlier model (5.5), the wideband discrete time sequence
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Figure 5.2: Receiver architecture of RF-aware detectors which estimates the
blockers and noise power, and calculates the detection threshold γ and sensing
time N that meet the desired false alarm and detection probability.

after the A/D stage is given by

ywb[n] =z̃1[n]e
j2πf1nTs + z̃2[n]e

j2πf2nTs +

(
β1z0[n]+

3β3
2
z∗1 [n]z

2
2 [n]

)
ej2πfIFnTs + wwb[n] (5.27)

where 2f2 − f1 = fIF , wwb[n] is the wideband AWGN, and where z̃1[n] and z̃2[n]

are composed of z1[n] and z2[n], respectively, in addition to their self-interference.

The exact expression of z̃1[n] is given by

z̃1[n] = β1z1[n] +
3β3
2
z1[n]

∣∣z1[n]∣∣2 + 3β3z1[n]
∣∣z2[n]∣∣2, (5.28)

and a similar expression can be written for z̃2[n]. We define φ1[n] = z̃1[n]−β1z1[n]

as the blocker self-interference term. As we are considering blockers of equal

strength, φ1[n] = φ2[n] , φ[n], and we will therefore denote them both by φ[n].

From (5.28), estimating the blockers strengths as seen by the LNA input

cannot be performed by a time average < |z̃1[n]|2 >, as the receiver only has

access to the blocker with its self-interference. As a result, we propose a new

blocker power estimation algorithm that locally generates complex baseband sig-

nals znorm1 [n], znorm2 [n] of unit energy which follow the modulation type of z1[n]

and z2[n]. We focus below on estimating the actual power of z1[n]. In practice,

estimation of both blockers’ powers is needed when the two blockers are of un-

85



equal powers. We propose an adaptive method to estimate the true blocker power

E[|z1[n]|2] 1from the time average power estimator η ,< |z̃1[n]|2 >, where < · >

denotes the time averaging operation. The cost function is given by

min
P

E[
(
|z̄1[n]|2 − η

)2
],where (5.29)

z̄1[n] = P× β1z
norm
1 [n] + P3(1.5β3z

norm
1 [n]|znorm1 [n]|2+

3β3z
norm
1 [n]|znorm2 [n]|2)

, PF1 + P3F2 (5.30)

where P is the scaling factor that corresponds to the correct amplitude (voltage)

of the blockers. This optimization problem can be solved via, e.g., the LMS

algorithm. Taking the gradient of the cost function with respect to the scaling

factor P, we get the following update equation

P[n+ 1] = P[n]− µ

⟨
4P[n− 1]3|F1|4 + 12P[n− 1]11|F2|4

+ 16P[n− 1]7|F1|2|F2|2 + 32P[n− 1]7ℜ{F1F
∗
2 }2 + 24×

P[n− 1]5ℜ{F1F
∗
2 }|F1|2 + 40P[n− 1]9ℜ{F1F

∗
2 }|F2|2−

4ηP[n− 1]|F1|2 − 12ηP[n− 1]5|F2|2 − 16ηP[n− 1]3ℜ{F1F
∗
2 }
⟩
. (5.31)

Once the blockers’ powers have been estimated, the high-order moments (5.21)

and (5.22) can therefore be computed. Then, the RF-aware detector utilizes the

receiver β3 parameter assumed to be known2 and the estimated blockers’ strengths

to choose the sensing time N and set the detection threshold in order to meet the

1Note that we do not consider the linear gain of the receiver chain after the LNA in our
analysis. However, the linear gain can be factored out as it is a common factor to all terms in
y[n].

2When unknown, the receiver IIP3 (and equivalently β3) can be estimated, e.g., by means of
a training sequence consisting of two strong blockers that is fed into the receiver input, followed
by an adaptive algorithm [RSV13] that minimizes the power in the subband where the IMD
term falls.
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Figure 5.3: Receiver architecture of compensated detectors which adaptively es-
timates the blockers’ strengths, and optimum weight θ in order to minimize the
power of the residual term e[n] in the subband of interest.

desired false alarm and detection probabilities according to (5.25) and (5.26).

5.4 Nonlinearity Compensation Through Sample-Based

Intermodulation Cancellation

The proposed RF-aware spectrum sensing receiver takes into account the presence

of strong blockers in the wideband channel to set the sensing time and detection

threshold. Typically, the receiver resorts to increasing the sensing time as com-

pared to AWGN scenarios in order to combat the loss in effective signal to blocker

and noise ratio (SBNR), defined as the ratio of the power of SOI to that of the

blocker and noise. As an alternative approach, we propose in this section a novel

compensation algorithm that first estimates the IMD term, and then subtracts it

from y[n] in order to improve the detection performance of both cyclostationary

and energy detectors without incurring any additional sensing time increase as

compared to the RF-aware detector.

The signal processing kernels used in the proposed compensation scheme are

shown in Fig 5.3. While filtering ywb[n] to get (5.5), we extract the complex

IF blockers by additional appropriate bandpass filtering stages applied to ywb[n],

and use them to estimate the intermodulation term that falls in the subband of
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interest given by (up to a scaling factor β3)

ẑ[n] =
1

β3
1

z̃∗1 [n]z̃
2
2 [n]. (5.32)

Our previous compensation method presented in [RSV13] is performed by

subtracting the IMD estimate in the subband of interest as follows

ỹ[n] = y[n]− 3

2
θẑ[n] = y[n]− 3θ

2β3
1

z̃∗1 [n]z̃
2
2 [n], (5.33)

where θ is the scaling factor of ẑ[n]. Although setting θ = β3 might seem as the

intuitive scaling factor to suppress the IMD term, we show in this section that

the optimal θ is a function of the blockers’ strengths and their modulation types.

Intuitively, even in the absence of noise in the subbands where the blockers reside,

the filtered signals z̃1[n] and z̃2[n] will never be equal to β1z1[n] and β1z2[n] as a

result of the self interference of the two blockers as shown in (5.28). As a result,

as the power of the blocker self-interference φ[n] increases when the blockers are

very strong, complete suppression of the IMD term is not possible. We denote

by e[n] the residual term in the subband of interest after subtracting 3
2
θẑ[n] from

zimd[n] defined in (5.17).

For the strong blockers, we neglect the impact of noise on e[n] as the Blocker

to Noise Ratio BNR ≫ 1. Keeping only up to the 5th order terms, the residual

term e[n] is given by

e[n] ≃3

2
β3z

∗
1 [n]z

2
2 [n]

2− 3

2
θz∗1 [n]z

2
2 [n]−

45θβ3
4β1

z∗1 [n]z
2
2 [n]|z1[n]|2

− 9θβ3
β1

z∗1 [n]z
2
2 [n]|z2[n]|2. (5.34)

As a result, even when θ = β3 the residual term e[n] will be non-zero and will be

composed of the last two terms in (5.34). It is not always true that setting θ = β3

will minimize E[|e[n]|2]. In fact, the weight θ should be chosen to minimize the
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following cost function

θ̂ = argminE[|e[n]|2], (5.35)

which would maximize the performance of the proposed compensation for a given

sensing time constraint. Note that computing the power of the residual term e[n]

analytically is not straightforward as its terms are not independent, and therefore

solving for the optimum weight θ is performed here numerically via an adaptive

filter. We propose the LMS algorithm to solve for the optimum weighting factor

θ. For notation, we let e[n] be expressed as e[n] = v[n]− θu[n], where

v[n] , 3

2
β3z

∗
1 [n]z

2
2 [n]

2

u[n] , 3

2
z∗1 [n]z

2
2 [n]−

45β3
4β1

z∗1 [n]z
2
2 [n]|z1[n]|2−

9β3
β1

z∗1 [n]z
2
2 [n]|z2[n]|2. (5.36)

Let θ[n] denote the weight applied to ẑ[n] at iteration n, the update equation is

therefore given by

θ[n+ 1] = θ[n]− µ
⟨
2θ[n]|u[n]|2 − u[n]v∗[n]− u∗[n]v[n]

⟩
= θ[n]− 2µ

⟨
θ[n]|u[n]|2 −ℜ{u[n]v∗[n]}

⟩
(5.37)

where µ is the step size, ℜ{·} extracts the real part of the argument, and where

< · > denotes the time averaging which replaces the statistical expectation oper-

ator E[·]. Since the receiver does not have access to the interference-free signals

z1[n] and z2[n] which u[n] and v[n] are a function of, the receiver locally generates

complex baseband signals znorm1 [n], znorm2 [n] of unit norm that follow the modu-

lation type of the blockers z1[n], z2[n]. Once generated, the powers of znorm1 [n]

and znorm2 [n] are adjusted by the scaling factor P based to the estimated blocker

power through (5.31). Then, the time-series u[n] and v[n] are computed and used
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to estimate the optimum weight θ via (5.37).

The proposed algorithm steps are summarized in Algorithm 1. As the opti-

mum weight θ is dependent on the SBR and modulation type of the blockers, the

optimum θ should be adapted for every pair of blockers. In fact, when multiple

IMD terms fall in the subband of interest, the power of the overall IMD term

is equal to the sum of the power of individual IMD terms as the blockers are

independent. As a result, minimizing the residual IMD term per blocker pair

will minimize the overall power in the subband of interest. Therefore, a parallel

architecture can be adopted in the case of multiple IMD terms that fall in the

subband of interest, where the optimum weight θ is computed for every pair of

blockers.

Algorithm 1 Adaptive Intermodulation Term Cancellation

1: Estimate blocker powers via minE[(|z̄1[n]|2 − η)
2
] using (5.31)

2: Find the optimum weight θ via minE[|e[n]|2] using (5.37).
3: Apply compensation algorithm (5.33) using optimum weight θ.

5.5 Numerical Results and Analysis

In this section, we verify our analysis and show the impact of the RF non-

linearities on the detection performance of both energy and cyclostationary de-

tectors for various modulation types and modulation orders. Given that the

RF-aware detector estimates the blockers’ strengths and utilizes the knowledge

of the receiver IIP3 to set the detection threshold, we quantify the impact of IIP3

and blockers’ strength uncertainties on the false alarm probability of RF-aware

detectors. Then, we show the performance gains using the proposed intermod-

ulation term cancellation in Algorithm 1 that can be achieved for various SBR

levels. The simulation settings are summarized in Table 5.1. Note that although

the SBR levels considered in this work are small and go down to −85 dB, these

levels are only deployed in these simulations to push the total input close to the
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Table 5.1: Simulation Settings
Rx IIP3 Noise Floor Rx NF SBR range SNR

in 10 MHz

−10 dBm −100 dBm 4 dB [−85,−60] dB 3 or 10 dB

IIP3. The same effects can be achieved with less severe SBR levels when multiple

blocker pairs are present in the wideband channel which generate multiple IMD

terms in the subband of interest.

5.5.1 Effect of Different Modulation Types and Orders on Detection

Performance

In order to show the impact of the blockers’ modulations on the detection perfor-

mance, we focus in this subsection on different scenarios where the modulation

type and/or order of the blockers are varied.

We consider first the case of non-circular blocker constellations [Pic94], i.e.

E[b2] ̸= 0,E[c2] ̸= 0, where the blockers and the signal of interest are M-PAM

modulated, and where b, c are the modulation symbols of z1[n], z2[n] as shown

in (5.17). In particular to the cyclostationary detection, we show the detection

performance when the feature used for detection is that at twice the IF, i.e.

α = 2fIF , with a lag ν = 0. As the cyclic frequency α is related to the signal

carrier frequency, the NC-CAC is therefore used for detection. The SBR and

SNR levels are set to −67 dB and 10 dB respectively, and the sensing time is set

to N = 500 samples. First, we note that the theoretically derived probabilities

of detection and false alarm match the simulations in Fig. 5.4. As the power of

the IMD term is greater than that of the noise, we are therefore operating in the

interference limited scenario. It can be seen that the detection performance of

both CD and ED are identical, and therefore energy detectors lose their advantage

over cyclostationary detectors in the case of non-circular blockers constellation. In

fact, under non-circular constellations, κ0b∗(N, 0) = κ2fIFb (N, 0), and µ0
b∗(N, 0) =

µ2fIF
b (N, 0), and as a result, the impact of the IMD term on both detection
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Figure 5.4: Detection performance of both cyclostationary and energy detectors
(ROC curves completely overlap) under a SBR =−67 dB, SNR = 10 dB,N = 500
samples, for different modulation orders and the same modulation type using
non-circular constellations. Solid lines represent theoretical ROC curves, and
markers represent ROC curves obtained via simulations.

methods is the same.

Further, we note that changing the modulation type/order of the blocker

between 4PAM and BPSK modulations impacts the detection performance of

both detectors. Since both κ0b∗(N, 0) and µ
0
b∗(N, 0) are dependent on higher order

statistics of the blockers information symbols, the detection performance will

therefore depend on the blockers modulation type. Since z2[·] is the term that is

squared as zimd[n] =
3β3
2
z∗1 [n]z

2
2 [n], the moments are therefore dominated by z2[·].

In fact, when the blockers have the same modulation as the SOI, the higher order

moments of 4PAM modulating symbols yield a higher variance κ0b∗(N, 0), which

results in a worse detection performance.

Next, we show the impact of varying the modulation type of blockers between

circular and non-circular modulation schemes, while keeping the 4-PAM modu-

lation scheme of the SOI and detecting the signal feature at α = 2fIF and ν = 0.

92



0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

 

 

Linear LNA, z
0
[n] 4PAM

z
0
[n] 4PAM, z

1
[n] 4PAM, z

2
[n] 4PAM

z
0
[n] 4PAM, z

1
[n] 4PAM, z

2
[n] QPSK

z
0
[n] 4PAM, z

1
[n] QPSK, z

2
[n] 4PAM

z
0
[n] 4PAM, z

1
[n] QPSK, z

2
[n] QPSK

(a) Cyclostionary Detection
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Figure 5.5: Detection performance of both cyclostationary and energy detectors
under a SBR = −67 dB, SNR = 10 dB, N = 500 samples, for different modulation
types and the same modulation order. Solid lines represent theoretical ROC
curves, and markers represent ROC curves obtained via simulations.

Note that signals with circular modulation schemes such as M-PSK (M > 2)

do not exhibit any feature at their carrier frequency. As a result, when z2[·] is

QPSK modulated, the detection performance is expected to be better than when

it is 4PAM modulated. This is shown in Fig. 5.5(a) where we verify analytically

this claim. Further, we show in Fig. 5.5(b) that in the case of circular blocker

constellations, the performance of energy and cyclostationary detectors are not

identical. In fact, energy detection outperforms cyclostationary detection for all

considered modulation types, as is the case for linear receivers. Further, as CD is

detecting the feature at α = 2fIF , the detection performance of CD is the worst

among all considered modulations when the blockers are also 4PAM modulated

since the SOI as well as the blockers exhibit a feature at the same cyclic frequency

of interest. In contrast, the detection performance is the best when both blockers

are QPSK modulated and exhibit no cyclic feature at α = 2fIF .

5.5.2 Adaptive Estimation of Blockers’ Powers

Knowledge of the blockers’ powers is needed for both the sensing time adaptation

and threshold setting in the RF-aware detector, and for selecting the optimum
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Figure 5.6: Convergence of adaptive filter (5.31) used to estimate the blocker
power as seen by the LNA input under SBRs of −80 and −77 dB.

weight θ in the sample-based intermodulation cancellation receiver. However,

estimating the blockers’ powers directly from z̃1[n] and z̃2[n] does not result in an

accurate estimate of the blocker powers as seen at the LNA input. We show in this

section the convergence of the adaptive filter proposed in (5.31), whose reference

signal is the estimated power of the blockers η =< |z̃1[n]|2 >. As shown in Fig.

5.6 under SBRs of −80 and −77 dB, the scaling factor P is adapted according

to (5.31) such that the power of z̄1[n] matches that of z̃1[n], when blockers are

QPSK modulated. We can see that the estimated power of z1[n] converges to the

true blocker power, while η obtained from z̃1[n] is understimated. It is important

to note that the gap between the true blocker power as seen by the LNA and the

estimated power η decreases with increasing SBR, and is a result of the blocker

self-interference φ[n] becoming smaller with weaker total input powers3.

3The impact of blocker power uncertainty on the threshold setting and therefore the false
alarm probability will be addressed in Section 5.5.4
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5.5.3 Detection Performance of RF-aware Detectors

As was shown in Section 5.5.1, the detection performance gets degraded in the

presence of strong blockers. RF-aware detectors adapt the sensing time and

detection threshold in order to operate at the desired point on the ROC curve. We

show in this section the achievable performance of RF-aware detectors through

the increase of sensing time. We consider the scenario with an SBR level of

−70 dB, and an SNR of 3 dB. The thresholds γc and γnc are computed to yield

a false alarm rate of 0.1 for each of the sensing times considered. Note that

the receiver IIP3 is assumed to be ideally known in this case, and therefore

accurate threshold setting is possible. The results are shown in Fig. 5.7 where

it is shown that the detection probability of both energy and cyclostationary

detectors essentially reaches 1 for linear front-ends at a sensing time of N = 1200

samples. However under a nonlinear front-end, RF-aware detectors achieve a

detection probability of 0.8 and 0.6 for ED and CD respectively. By increasing

the sensing time by five-folds (N = 6000), the detection probability of both ED

and CD is at 0.97 and 0.92. In fact, increasing the sensing time results in an

increase in the effective SINR, which improves the detection performance of both

ED and CD. It is important to note that receivers operating under higher input

powers will experience a more severe non-linearity behavior, and the behavior in

Fig. 5.7 will be further exacerbated, resulting in a large sensing time increase to

achieve the desired detection probability.

5.5.4 Impact of Parameters Uncertainty on False Alarm Probability

of RF-aware Detectors

As was shown in Section 5.5.1, the derived expression can accurately estimate

the false alarm probability for any given threshold γnc or γc in (5.25)-(5.26). As

a result, RF-aware detectors utilize the knowledge of the modulation type of

the blockers, β3, and the blockers’ powers to compute the threshold in order to
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Figure 5.7: Effect of varying sensing time on the detection performance of
RF-aware receivers for both energy and cyclostationary detectors at a SNR of
3 dB and SBR of −70 dB. The caption ’Nonlinear LNA’ refers to the non-com-
pensated receiver. Solid lines correspond to theoretical curves and the markers
correspond to simulation results.

operate at the target false alarm rate for the desired sensing time N . However,

the blockers’ strength is estimated as shown in Fig. 5.2, and also the receiver

parameter β3 might not be exactly known. As a result, these parameters might

not be exact and therefore the actual false alarm probability will not be equal to

the target rate. We study in this section the robustness of the RF-aware detector

to uncertainties in both β3 and blocker powers.

We next show the impact of the IIP3 uncertainty on the resulting false alarm

rate, where cyclostationary detection is performed on the cyclic feature α = 2fIF

and lag ν = 0 using N = 500 samples. The detection threshold is set based on

the assumption that the receiver IIP3 is at −10 dBm, with perfect knowledge

of the blockers’ strengths in order to achieve a target false alarm rate of 0.1.

Using this fixed threshold, we sweep the receiver IIP3 uncertainty in the interval

[−1, 1] dB in steps of 0.2 dB. In effect, this experiment shows the resulting false

alarm rate of CD and ED when the receiver sets the threshold based on an IIP3

of −10 dBm, whereas the true IIP3 is varying between −11 dBm and −9 dBm.
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Figure 5.8: Impact of uncertainties of IIP3 and blockers’ strength on the resulting
false alarm rate compared to the target false alarm rate of 0.1 using N = 500
samples. Solid lines correspond to theoretical results, and markers correspond to
simulation results.

Fig. 5.8(a) shows the actual false alarm rate when operating using the fixed

threshold computed using an IIP3 of −10 dBm. The first observation to make is

that cyclostationary detectors are more robust than energy detectors with respect

to IIP3 uncertainties. Second, the impact of the uncertainty on the false alarm

rate is more pronounced in low SBR regimes. This is intuitive as the IMD term

will have a bigger impact on the distribution of the statistic under H0 in lower

SBR regimes, i.e. the strong blocker case. As the blocker strengths decrease, the

impact of IIP3 uncertainty vanishes as the receiver operates closer to its linear

region. Very similar conclusions can be made with respect to the impact of the

blockers’ strength uncertainty on the actual false alarm rate as shown in Fig.

5.8(b). In summary, we have shown that one other advantage of cyclostationary

detectors over energy detectors is their robustness to parameter estimation errors.

We note that in both Fig. 5.8(a) and Fig. 5.8(b), the uncertainty behavior is

very accurately predicted using the closed form expressions (5.26) and (5.25).

The theoretical curves were obtained by first computing ν0y(N, 0), ν
0
y∗(N, 0) and

κy(N, 0,H0), κy∗(N, 0,H0) using the varying IIP3 level, and by using the selection

threshold that would yield a CFAR of 0.1 under an IIP3 of −10 dBm.
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5.5.5 Selecting the Optimum Weight θ for the Sample-Based Com-

pensation Algorithm

As was pointed out in Section 5.4, the power of the residual term (5.34) is not

always minimized by setting θ = β3. We show in this section the power of the

residual term, i.e. E[|e[n]|2], as a function of the θ-equivalent IIP3, defined as

θiip3(dBm) = 20 log10

√
4|β1|
3|θ|

+ 10[ dBm]. (5.38)

When θ = β3, the θ-equivalent IIP3 will be equal to the receiver IIP3.

We show in Fig. 5.9 the power of the residual term e[n] for varying θ-equivalent

IIP3 values under different SBR values, a fixed SNR of 3 dB, when the blockers

are 4PAM modulated. The solid lines represent the power of the residual term

obtained via simulations, and the markers correspond to the power of e[n] after

the approximation as given in (5.34). First, we note that the power of e[n] is

not always minimized when θ = β3, or equivalently when θiip3 = −10 dBm. As

the SBR increases, the power at the input of the LNA drops, and therefore the

relative power of the blockers’s self-interference drops. As the blockers become

weaker, the optimum θ tends to the actual β3 parameter of the receiver. Note

that this behavior was not shown in [RSV13] where the compensation method

sets θ to β3 regardless of the power of the blockers. This is the reason for the

limited compensation performance reported in [RSV13].

Similarly to the dependency of the ROC on the modulation type of the block-

ers, the power of the residual term e[n] also varies with varying blockers’ modula-

tion type. We show in Fig. 5.10 the power of the e[n] for a fixed SBR of −80 dB at

an SNR of 3 dB for various θ-equivalent IIP3 values when the blockers are 4PAM

and QPSK modulated. In fact, this result shows that the optimum weight θ is not

only dependent on the blocker power level, but also on their modulation type.

This further affirms our approach in Section 5.4 that a modulation-dependent
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Figure 5.9: Power of residual term e[n] as a function of the θ equivalent IIP3
values when blockers are 4PAM modulated under varying SBR levels for a fixed
SNR of 3 dB. Solid lines correspond to the power of the residual term obtained
by simulation, and the markers correspond to the power of e[n] obtained through
the approximation made in (5.34).

compensation algorithm is required in order to achieve the best compensation of

nonlinearities.

5.5.6 Adaptive Estimation of the Compensation Coefficient θ

After estimating the scaling factor P that reflects the true blockers’ power as

seen by the LNA input, we perform the Step 2 of the Algorithm 1 which involves

adaptively solving for the optimum weight θ as given by (5.37). The initial

condition of the adaptive filter is set such that the θ-equivalent IIP3 is equal to

the true IIP3 of the receiver, namely −10 dBm. Fig. 5.11 shows the convergence

of the weight θ that should be applied to ẑ[n] in order to minimize the power of the

residual term e[n] under SBR values of −80 and −77 dB. First, we note that the

LMS algorithm converges to the optimum θ-equivalent IIP3 that we have shown

in Fig. 5.10, and therefore the online algorithm proposed in Algorithm 1 can
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Figure 5.10: Power of residual term e[n] as a function of the θ equivalent IIP3
values when blockers are 4PAM vs QPSK modulated for a fixed SBR of -80
dB, and SNR of 3 dB. Solid lines correspond to the power of the residual term
obtained by simulation, and the markers correspond to the power of e[n] obtained
through the approximation made in (5.34).

adaptively adjust the optimum weight θ that is applied to ẑ[n] before subtracting

it from the samples y[n] of the subband of interest. The next section will show

the actual detection performance of energy and cyclostationary detectors after

estimation of the optimum weight θ.

5.5.7 Detection Performance using the Proposed Adaptive IMD Can-

cellation Algorithm

We show in this subsection the impact of varying the SBR levels on the detection

performance of energy and cyclostationary detectors for ideal front-ends, and

non-linear front-ends using both RF-aware and compensated detectors. We set

the sensing time to N = 500 samples, the false alarm rate to 0.1, and SNR at

3 dB. Then, we show the corresponding detection probability for varying SBR

levels.
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Figure 5.11: Convergence of the LMS algorithm for estimation of the optimum
weight θ to minimize the power of the residual term e[n] under an SBR of −80
and −77 dB, for QPSK and 4PAM modulated blockers.

Fig. 5.12 shows the detection probability of both ED and CD with varying

SBR levels from −84 dB to −60 dB under two scenarios which differ by the block-

ers’ modulations. We assume in these results that the receiver IIP3 is perfectly

known. Under linear front-ends, the detection probability of ED and CD is at

0.94 and 0.91 respectively. In Fig. 5.12(a), both blockers z1[·] and z2[·] are QPSK

modulated. In Fig. 5.12(b), both blockers and the SOI are 4PAM modulated.

In both cases, the SOI z0[·] is 4PAM modulated, and the detection is performed

on the cyclic feature at α = 2fIF and ν = 0. First, the detection performance

of RF-aware detectors starts to degrade at an SBR level of −62 dB. As a result,

there is a threshold input power level of xwb[n] above which the detection perfor-

mance of both energy and cyclostationary detectors starts to suffer. For circular

constellations such as in Fig. 5.12(b), the detection performance of both CD and

ED are identical as discussed in Section 5.5.1 over all ranges of SBR values where

the IMD component is dominant.

Further, Fig. 5.12 shows the detection performance of the sample-based com-
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Figure 5.12: Effect of varying SBR levels on both energy and cyclostationary
detectors at a SNR of 3 dB and fixed sensing time of N = 500 samples.

pensation algorithm when θ = β3. As a result of the blockers’ self-interference

at low SBR levels, the compensation algorithm fails to completely suppress the

IMD term zimd[n] as discussed in Section 5.4. Setting θ = β3 does not exploit

the knowledge of the modulation type of the blockers since it weights the IMD

estimate by θiip3 = −10 dBm. In contrast, the proposed solution chooses the

optimum modulation-dependent weight θ in order to minimize the power of the

residual term e[n] given in (5.34). In summary, a performance gain on the or-

der of 3 dB compared to setting θ = β3 can be achieved for lower SBR regimes

using the proposed adaptive algorithm as shown in Fig. 5.12. Note that this

performance gain is achieved without incurring any additional sensing time.

5.5.8 Impact of IIP3 Uncertainty on Performance of Sample-Based

Compensation Algorithm

We show the impact of IIP3 uncertainties on the ROC curve of the proposed

sample-based compensation detector. As the receiver IIP3 is only needed for

threshold setting in the RF-aware receiver, the IIP3 uncertainty will only affect

the operating point along the ROC curve, and therefore will not degrade the

ROC curve. As shown in (5.34), the residual term is a function of the β3, which

is directly related to the receiver’s IIP3. When the receiver IIP3 is not exactly
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Figure 5.13: Effect of varying IIP3 uncertainty on the ROC curves of energy and
cyclostationary detectors at a SNR of 3 dB and fixed sensing time of N = 500
samples for different SBR levels under QPSK modulated blockers.

known, the optimum scaling factor θ will therefore be computed based on the

wrong β3 parameter. We show in Fig. 5.13 the impact of IIP3 uncertainty ∆ on

the detection performance of both ED and CD. For instance, a curve annotated

with ∆ = 0.5 dB means that the true receiver IIP3 is 0.5 dB away from the

assumed one in the algorithm for estimating θ. Fig. 5.13(a) shows the ROC curves

for both ED and CD under an SBR of −72 dB for various IIP3 uncertainties

∆ ranging from 0 to 1 dB. Operating under an IIP3 uncertainty degrades the

detection performance as the computed θ will no longer be the optimum scaling

factor. Furthermore, the loss in detection performance is further exacerbated in

the lower SBR regimes as shown in Fig. 5.13(b) which considers an SBR of −80

dB. In fact, this behavior is expected to occur as under the same uncertainty ∆,

the power of the residual term e[n] will be larger at lower SBR regimes. As a

result, the behavior shown in Fig. 5.13 shows that the accuracy requirements of

the receiver IIP3 are more stringent in lower SIR regimes.

5.6 Summary

This chapter studied the impact of radio front-end LNA non-linearities on both

energy and cyclostationary spectrum sensing. Due to the presence of strong
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blockers, the LNA could operate in its non-linear region, thus generating in-

termodulation terms that could fall in the subband of interest. We analytically

derived the false alarm and detection probabilities of both considered detectors in

closed-form and showed that the detection performance is dependent on the mod-

ulation types of the blockers and the signal of interest. Based on these results, we

proposed an RF-aware detector that accounts for the RF nonlinearity by adapting

the sensing time and detection threshold. We analytically quantified the robust-

ness of RF-aware detectors to uncertainties in the receiver IIP3 and blockers’

strength, and showed that cyclostationary detectors are more robust than energy

detectors in that regard. Finally, we proposed a modulation-dependent inter-

modulation compensation algorithm that improves the detection performance of

both energy and cyclostationary detectors, and have shown its robustness to IIP3

uncertainties. Our novel adaptive techniques for estimating the blockers’ pow-

ers and the optimum weighting factor converge within relatively low iterations

compared to the sensing time, making them attractive for real-time operation.

Overall, the analysis and signal processing developments presented in this chap-

ter demonstrate that wideband spectrum sensing receivers are very sensitive to

nonlinear distortion of the RF components, and that substantial performance

improvements can be obtained with DSP-enhanced receiver principles.
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CHAPTER 6

Compressive Wideband Spectrum Sensing

based on Cyclostationary Detection

Another challenge in deploying wideband sensing radios is the need for high-rate

and high-resolution ADCs, which are hard to design and are power hungry. One

solution to this problem is to adopt a compressive sensing approach, where dif-

ferent aliased versions of the wideband spectrum are downconverted and sampled

at a lower rate than the Nyquist rate. Then, the original signal is reconstructed

in DSP by means of an optimization technique that exploits the sparsity of the

received signal in a given domain. We investigate in this chapter how the SCF

sparsity the can be utilized to reduce the ADC sampling rates. Two such recon-

struction examples can be found in [CRJ11] which uses the Modulated Wideband

Converter (MWC) as the analog front-end [ME10], and [Tia11] where the SCF

reconstruction is performed blindly with no a priori knowledge of the carriers

and bandwidths of the signals to be detected.

This chapter is organized as follows. In Section 6.1, we present our system

model, give a brief overview on cyclostationary-based detection using a different

but equivalent approach than the one given in (2.9). In Section 6.2, we relate

the SCF of the sub-Nyquist samples to the one using Nyquist samples, and for-

mulate our reduced complexity optimization problem for reconstruction of the

spectral peaks of interest. In Section 6.3 we derive the necessary conditions to

guarantee a unique solution for the SCF peak reconstruction from sub-Nyquist

samples. We derive in Section 6.4 the minimum sampling rate given the sparsity

of the wideband channel. Section 6.5 gives the numerical results with a detailed
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discussion on the regimes where a unique reconstruction of the features needed

for detection is guaranteed. Finally, Section 6.6 concludes the chapter.

6.1 System Model and Problem Formulation

6.1.1 System Model

In typical CR scenarios, the sensing radios have some information about the

signals to be detected. In other words, the goal of the CRs is to detect the

presence or absence of one or many PUs simultaneously in a wideband channel,

with a priori knowledge of their carrier frequencies, symbol rates, and modulation

schemes. We explore a reduced complexity approach for cyclostationary detection

that exploits the knowledge about carrier frequencies and signal bandwidths of

the signals to be detected, and reconstructs the spectral correlation peaks of the

SCF without reconstructing the Nyquist samples. In addition, to the best of the

our knowledge, there has been no theoretical work with respect to the minimum

achievable compression ratios under a given SCF sparsity that guarantee a unique

solution to the reconstruction problem. This presents a design guideline in terms

of the achievable sampling rate reductions.

For a fixed Tsense, instead of acquiring NT samples at a high rate fs, we acquire

MT samples at a rate MT

NT
fs ≤ fs. This can be performed using architectures such

as the MWC [ME10], where the wideband signal is multiplied by M random

mixing sequences which alias different parts of the wideband signal to baseband.

These M branches are then sampled at a lower rate, where the sum of the rates

is below the Nyquist rate fs.

We perform frame-based processing, where we let z ∈ RM denote a frame of

sub-Nyquist samples. The MT samples will result in MT/M different frames to

be processed for detection. We further assume that a single sub-Nyquist frame

z ∈ RM is related to a Nyquist frame x ∈ RN via z = Ax, where A ∈ RM×N
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Table 6.1: Cyclic features for some modulation classes
Modulation Peaks at (α,f)

BPSK ( 1
T
, fc), (2fc,0), (2fc ± 1

T
,0)

MSK ( 1
T
, fc), (2fc ± 1

2T
,0)

QAM ( 1
T
, fc)

is the sampling matrix. If one were to adopt the MWC as the analog front-end,

the matrix A will be composed of the Fourier series coefficients of the mixing

sequences [ME10]. As a result of the matrix multiplication, the compression

ratio is defined as M
N
. Note that for practical implementation of the compressive

sensing algorithms, the vector z can be obtained directly from any of the analog

front-ends [LKD07, YH09, CZL09]. As is the case for the MWC front-end, the

Fourier series coefficients (and therefore the elements of A) will be independent

from one another as the sequences are orthogonal. In this chapter, we model A

as a random Gaussian matrix in RM×N with i.i.d. components.

6.1.2 Non-Asymptotic Nyquist SCF and Two-Dimensional Sparsity

We start this section by showing an alternative method for estimating the SCF

using Nyquist samples. The wideband channel is first downconverted to baseband

and sampled. Given that the computation of the SCF includes computing the

auto-correlation averaged over different frames of samples, we consider a frame-

based model, where each frame is of length N samples, and where the remaining

NT/N frames (assumed to be integer) are used for statistical averaging. Let

x ∈ RN denote a single frame of samples obtained from sampling x(t) at the

Nyquist rate fs.

In the context of time constrained spectrum sensing, due to the limited num-

ber of samples acquired, perfect reconstruction of the SCF is not possible. Thus,

the spectrum sensing process estimates the non-asymptotic SCF based on the NT
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Figure 6.1: SCF Support for a Bandpass Signal.

samples acquired as follows

Sx = FN

 N

NT

NT /N∑
ℓ=1

xℓx
T
ℓ

FN , (6.1)

where NT/N is the number of spectral averages, xℓ is the ℓ
th data frame received,

and FN is a N ×N DFT matrix. The frame length N determines the SCF res-

olution in both angular and cyclic frequency (being 1/NTs), and the number of

frames NT/N emulates the expectation over different realizations. Note that as

NT/N → ∞, the estimated discrete SCF approaches the asymptotic continuous

SCF [Gar88], which is a sparse two-dimensional spectral map with non-zero fea-

tures at the cyclic / angular frequency pairs shown in Table 2.1 [Gar88]. Fig. 6.1

shows the support of the SCF for a real bandlimited signal.

If we consider a sparse multiband signal x(t) as in (2.1), the noise being
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independent of the signal, the SCF of signal and SCF of noise are directly summed

and the resultant SCF is sparse in both α and f as shown in Fig. 6.1.

The aim of this work is to 1) reduce the complexity of the SCF reconstruction

by making use of the known signal parameters, 2) understand the impact of

compression on sensing time and the resulting sensing performance, and 3) derive

the conditions needed to guarantee uniqueness of the reconstructed SCF.

6.2 Nyquist-SCF Reconstruction using sub-Nyquist Sam-

ples

In this section, we start by our first goal, and reconstruct specific points of the

SCF from samples obtained via a sub-Nyquist compressed sampling receiver and

detects the presence or absence of sk(t) for any given index k. We derive an

expression relating the Nyquist and sub-Nyquist SCF which is subsequently used

to formulate an optimization problem for reconstruction.

6.2.1 Relating Nyquist and Sub-Nyquist SCF

Since the SCF requires finding the autocorrelation of the signal being processed,

we start by defining the non-asymptotic auto-correlation matrix Rz ∈ RM×M

Rz =
1

L

L∑
ℓ=1

zℓz
T
ℓ , (6.2)

where L = MT/M frames of z are considered for statistical averaging of the

covariance matrix, and zl ∈ RM is a frame of sub-Nyquist samples. Given that

our compressive sampling model is defined as z = Ax, it follows that the Nyquist

auto-correlation matrix Rx ∈ RN×N and Rz are related via

Rz = ARxA
T (6.3)
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Vectorizing both sides of the equation gives the following

rz = (A⊗A)rx , Φrx (6.4)

where⊗ is the Kronecker product, rx = vec(Rx), rz = vec(Rz) andΦ = A⊗A ∈

CM2×N2
.

The SCF matrix Sx can be obtained from the auto-correlation matrix Rx by

taking Fourier transform of Rx with respect to its columns on the right and rows

on the left. This can be expressed as

Sx = FNRxF
H
N (6.5)

where FN is a N ×N DFT matrix. Again performing the vec operation on this

equation gives

sx = Txrx (6.6)

where sx = vec(Sx) and Tx = FN ⊗ FN ∈ CN2×N2
. The matrix Tx consists

of two FFT matrices FN which transform the (t, τ) time-domain pair of rx to

the (α, f) pair in the SCF. Similarly, we obtain sz = Tzrz where sz = vec(Sz),

Tz = FM ⊗ FM ∈ CM2×M2
and FM is a M ×M DFT matrix.

The Tx and Tz matrices are full rank non-singular matrices since they are

composed of DFT matrices which are also full-rank non-singular and Rank(A⊗

B) = Rank(A)Rank(B) [DB12]. Hence, T†
xTx = TxT

†
x = IN2×N2 where †

denotes the pseudo-inverse operation. Also, Tx and Tz are orthogonal matrices

since they are formed using DFT matrices. This can be seen as follows

(FN ⊗ FN)
T (FN ⊗ FN) = (FT

N ⊗ FT
N)(FN ⊗ FN)

= (FT
NFN ⊗ FT

NFN) = IN ⊗ IN = IN2

Now, as Tx is an orthogonal matrix, TH
x = T†

x and hence TH
x Tx = TxT

H
x =
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IN2×N2 . We can now relate sx and sz using equation (6.4) as follows

Tzrz = TzΦrx

sz = TzΦrx = TzΦTH
x Txrx , Φ̃sx, (6.7)

where Φ̃ = TzΦTH
x ∈ CM2×N2

. Eq. (6.7) relates the vectorized SCF of the sub-

Nyquist samples to that of the Nyquist samples, which we want to reconstruct. In

order to ensure unique SCF reconstruction, the measurement matrix Φ̃ must sat-

isfy the restricted isometry property (RIP) as has been shown by [Don06], [CT06].

We show in [Jai12] that the way we construct Φ̃ in our algorithm guarantees that

it will satisfies the RIP with high probability.

6.2.2 Reconstruction of the Nyquist SCF

The fact that the matrix Φ̃ satisfies RIP with high probability, which makes the

Nyquist SCF reconstruction feasible. Using (6.7) we formulate the reconstruction

as a standard regularized least squares problem by introducing an l1 minimization

term, namely

min
sx

||sx||1 + λ||sz − Φ̃sx||22. (6.8)

for some λ > 0 ∈ R.

As was shown in Section 6.1.2, the spectral correlation peaks are discrete in the

cyclic frequency domain α. The resolution in both f and α is solely determined

by the FFT size N , and is equal to fs/N where fs is the Nyquist sampling

rate. Therefore, in order to detect signals in a wideband channel, the resolution

required for the spectral correlation peaks to be prominent would be high, leading

to a large N . This leads to a large computational complexity in (6.8) since sx

is in CN2
. Due to the sparsity of the vectorized SCF sx, we could reconstruct

only the Kf points at which spectral correlation peaks would be present, hence
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making the reconstruction problem more computationally efficient. The number

of features Kf is a function of the number of signals present in the wideband

channel, their bandwidths, the resolution of the SCF (determined by N and the

sampling rate) and the modulation class of the signals being detected (see Table

2.1).

We now find an expression for Kf from the two-dimensional SCF given in

Fig. 6.1. Here, each bandlimited signal with bandwidth B occupies four lozenges

with diagonals B and 2B. Hence the total number of points Kf out of N2 points

of the SCF occupied by K signals is

Kf = 4K(
BN

fnyq
)
2

(6.9)

where ( BN
fnyq

)
2
is the area of one of the four lozenges and K is the total number of

signals present. The above expression for Kf assumes that we are operating in

a high SNR regime(≥ 10dB). At low SNRs(< 10dB), as the noise power is high,

the PSD is not sparse any more and we include points corresponding to the entire

PSD in addition to those due to the signals giving the following expression for

Kf

Kf = 4K(
BN

fnyq
)
2

+N − 2K(
BN

fnyq
) (6.10)

where N accounts for N PSD points in the SCF and the factor 2K( BN
fnyq

) accounts

for the overlap between the total number of points occupied by K signals at high

SNRs and the PSD.

Given that the SCF has only Kf features, the reduced dimensionality SCF is

defined as

ŝx = Mfsx, (6.11)

where Mf ∈ RKf×N2
is a diagonal matrix with elements equal to 1 at the indices

of possible cyclic features and ŝx ∈ CKf×1. Furthermore, we also define the
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matrix Φ̂ = Φ̃{j=1:Kf}, which selects the corresponding Kf columns of Φ̃ and

stores them in Φ̂. Given that we are only reconstructing the non-zero elements

of the SCF vector, we can therefore drop the ℓ1 minimization term related to the

SCF sparsity, and the unconstrained optimization problem from (6.8) becomes

min
ŝx

||sz − Φ̂ŝx||22, (6.12)

which is an optimization in CKf , where Kf ≪ N2. This formulation renders the

optimization problem more computationally efficient since the cardinality of the

search space has been reduced from N2 to Kf . The reconstruction above is a

regular least squares problem which can be solved in closed form as follows

ŝx = Φ̂†sz (6.13)

The solution to (6.13) is unique if the matrix Φ̂ is full column rank. Since

Φ̂ = Φ̃{j=1:Kf}, we analyze the measurement matrix Φ̃ and derive the conditions

which result in a unique solution to the proposed reconstruction problem.

6.3 Uniqueness of the Proposed Sub-Nyquist Reconstruc-

tion

In this section, we study the conditions under which a unique solution exists for

(6.13), as a function of the cardinality of the vector sx, defined as

C(sx) = ||sx||0 , Kf . (6.14)

As the Nyquist SCF is sparse in both its angular and cyclic frequencies, C(sx) is

therefore smaller than N2. In fact, C(sx) is determined by the number of signals

present in the wideband channel, and by their bandwidths. On the other hand,

the location of the non-zero elements in sx is determined by the carrier frequencies
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and the bandwidths of the present signals. Note that (6.14) assumes that there

are Kf non-zero elements in the Nyquist SCF when the number of averages L in

(6.2) are sufficient to make the SCF sparse. Under a limited number of samples,

noise would no longer not contribute to Kf , and therefore Kf acts as a lower

bound to the number of non-zero points in the SCF.

To study the uniqueness of the reconstructed vector we start by finding the

Rank of the measurement matrix Φ̃ = TzΦTH
x . From the Rank property of

Kronecker product of matrices we have, Rank(Tz) =M2 sinceRank(FM⊗FM) =

Rank(FM)Rank(FM). Similarly, Rank(Φ) = M2 and Rank(TH
x ) = N2. Hence,

Φ̃ is the product of three full-rank matrices and the Rank(Φ̃) = min(M2,M2, N2)

= M2 since M ≤ N .

The above statement shows that there cannot exist a set of more than M2

columns of Φ̃ that are linearly independent. However, this does not mean that

every set of Kf columns of Φ̃ are linearly independent, even if Kf < M2. For

this reason, we use the Spark of a matrix to find when a unique solution exists.

The Spark of a matrix is defined as

Spark(A) = mind||d||0 such that Ad = 0. (6.15)

From the definition in (6.15), the Spark of a matrix is the smallest number s such

that there exists a set of s columns in the matrix that are linearly dependent. In

other words, any subset of columns formed of less than the Spark of a matrix

will be full column rank with probability 1. Obviously, the Spark of a matrix

cannot be greater than its Rank + 1. The section below is aimed at finding the

Spark of the matrix Φ̃.

6.3.1 Finding the Spark of Sensing Matrix

In order to obtain the Spark of Φ̃, we start by finding the Spark of the matrices

that compose it. From the definition of Φ, we have that Φ̃ = (FMAFH
N) ⊗
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(FMAFH
N).

Given that the sampling matrix A is formed of i.i.d components, its Spark is

equal to M + 1 with high probability. In other words, any subset of M columns

of A will form a full-column rank sub-matrix.

It was shown in [JM09] that if A is a M × N rank-deficient matrix, i.e.

Rank(A) < N , then the Spark(A ⊗ A) = Spark(A). Therefore, in order to

find Spark(Φ̃), it is sufficient to find Spark(FMAFH
N). From [Jai12], we know

the Gaussian distribution is invariant to unitary transformation. Hence, the

elements of (AFH
N) are also i.i.d Gaussian distributed and thus Spark(AFH

N) =

Spark(A) =M + 1.

Lemma 1. Let A be a N × N invertible matrix, and let B be a N ×M rank

deficient matrix. Then Spark(AB) = Spark(B).

Proof. Using the definition of Spark,

Spark(AB) = mind||d||0 such that ABd = 0.

Given that matrixA is invertible, the constraint therefore is equivalent toBd = 0,

and therefore,

Spark(AB) = mind||d||0 such that Bd = 0,

which is the definition of Spark(B). Therefore, Spark(AB) = Spark(B).

Let T = AFH
N , where T is a N ×M rank deficient matrix. Given that FM is

invertible since it is an M-point DFT matrix, Spark(FMT) = Spark(T) =M+1

as a result of Lemma 1.

The above results prove that Spark(FMAFH
N) = Spark(A) =M +1. Hence,
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this proves that Spark(Φ̃) =M + 1 since [JM09]

Spark(FMAFH
N ⊗ FMAFH

N) = Spark(FMAFH
N). (6.16)

6.3.2 Implications of the Spark(Φ̃) and Uniqueness of the Solution

As a result of the Spark of the matrix Φ̃, we can guarantee that as long as

Kf < M + 1, then the resulting matrix Φ̂ will be full column rank and the

reconstruction in (6.13) will have a unique solution. From the definition of Spark,

this result will hold for any set of M columns. These results prove the following

theorem.

Theorem 1. There exists a unique solution to the reconstruction problem sz =

Φ̂ŝx with probability 1, iff Kf = ||sx||0 < Spark(Φ̃) = (M + 1).

Proof. This is a direct result of the definition of the Spark, and Spark was proved

to be equal to M + 1.

Theorem 1 guarantees the existence of a unique solution if the criteria (M +

1) > Kf is met with probability 1. However, the uniqueness criteria can still be

met with (M + 1) ≤ Kf with a non-zero probability. In the section below, we

show that a unique solution to the reconstruction problem can be obtained with

a quite high probability even when (M + 1) ≤ Kf , which is a typical case in the

problem of reconstruction of the Nyquist SCF as Kf ∼ N2.

6.3.3 Probabilistic Spark of the Sampling Matrix

We have shown in the previous section that if (M + 1) > Kf , then the resulting

reconstruction method will result in a unique solution. Further, if Kf > M2, then

the resulting matrix Φ̂ = Φ̃{j=1:Kf} will be rank deficient with probability 1 since

Rank(Φ̂) =M2. In the regime where (M + 1) ≤ Kf ≤M2, the resulting matrix

can be full rank with a certain non-zero probability. Let pk be the probability
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Figure 6.2: Simulation result: Probability that every Kf columns of Φ̃ forms a

full-column rank Φ̂, where Spark(Φ̃) ≤ Kf ≤ Rank(Φ̃) for M/N = 0.25 and
M/N = 0.5 for increasing values of N.

that Φ̂ is full column rank with Kf = κ, (M + 1) ≤ κ ≤ M2. Similar to the

Spark of a matrix, the probability pk is NP-hard to compute since it requires

us to find all the possible subsets of k columns of Φ̃ that are independent as is

shown in [TP12]. In the rest of this section, we find empirically the probability

pk that the chosen matrix obtained by reconstructing Kf ≥M +1 features is full

column rank, and hence will result in a unique reconstruction.

From the definition of the Spark, there is a non-zero probability of at least

one subset of Kf columns being dependent where Kf is in the range M + 1 ≤

Kf ≤ M2. Here we focus on the maximum number of dependent sets of Kf

columns to calculate the probability pKf
that the chosen matrix is full-column

rank.

Fig. 6.2 shows the probabililty pKf
that all possible subsets of Kf columns

of Φ̃ are independent as a percentage of total columns N2. To analyze the

effect of the compression ratio on pKf
, we compare this for two compression

ratios of M/N = 0.25 and 0.5. Also, at each compression ratio, we vary M

and N to see if there is any gain or loss in terms of pKf
while operating at
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higher resolution in frequency (N). From the curves in Fig.6.2, we can make two

important observations. Firstly, at lower compression ratios (M/N = 0.25), the

probability that all subsets of M + 1 ≤ Kf ≤ M2 columns will be independent

is much higher as compared to higher M/N . This implies that the sparser the

SCF is, the smaller the compression ratio can be. As a result, the probability of

having a full-column matrix is higher, yielding a unique solution with a higher

probability. Secondly, at a given M/N ratio, operating at higher values of M

and N increases the probability of choosing a subset of Kf independent columns

substantially. This results in an inherent trade-off between the reconstruction

complexity which is directly proportional to M2 and N2 as Φ ∈ CM2×N2
, and

the probability that the solution to the reconstruction problem will be unique.

6.3.4 Condition for Uniqueness of the Reconstructed Vectorized Nyquist

SCF ŝx

The least-squares problem given in (6.12) can be solved if the system of equations

is overdetermined, i.e, ifM2 ≥ Kf . However, we have proven above that a unique

solution to the reconstruction problem exists with probability 1 ifM+1 > Kf . In

addition, we have shown that if (M+1) ≤ Kf ≤M2, then a unique solution exists

with a very high probability pKf
. Thus we obtain the closed form expression of

the least-squares problem whose solution is unique and always exists, resulting

in the following theorem.

Theorem 2. Let the system of equations, sz = Φ̂ŝx be overdetermined withM2 ≥

Kf . The solution to the reconstruction of the cyclic features of the vectorized

Nyquist SCF always exists and is unique with probability 1 iff Kf ≤ M , or with

probability pKf
iff M + 1 ≤ Kf ≤M2, and is given by

ŝx = Φ̂†sz = [Φ̂HΦ̂]−1Φ̂Hsz. (6.17)

In the next section, we relate the conditions for uniqueness of the reconstruc-
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tion given by (6.17) to the compression ratio and the sparsity of the wideband

channel.

6.4 Minimum Lossless Sampling Rates and its Relation

to SCF Sparsity Level

In the compressive sensing literature, one question that often arises is how low can

the compression ratio be for a given sparsity level enabling lossless recostruction

of the signal. Lossless reconstruction refers to the error between original and

reconstructed signal being negligible for the considered application. By only

exploiting the sparsity level in the PSD, the minimum compression ratio for a

non-blind reconstruction (Landau rate) can be as low as the spectrum occupancy

[Lan67], defined as the ratio between occupied bandwidth to the total channel

bandwidth. This minimum compression ratio can only be achieved in high SNR

regimes SNR > 20 dB, where the noise power is small relatively to the signals

occupying the spectrum. At low SNRs, as the signal and noise are of similar

strength, the PSD can no longer be considered sparse anymore even if the actual

occupied signal bandwidth is negligible. Hence, the signal reconstruction will fail

and sampling rates cannot reduced by exploiting the PSD sparsity only.

The Landau rate, which we define as the minimum sampling rate based on

the PSD sparsity is expressed as

(
M

N

)
Landau

=
Kf,PSD

N
= 2K

B

fnyq
. (6.18)

By operating in the cyclic domain, the sparsity has to account for non-zero

cyclic frequencies as well, which yields a sparser transformation domain, and

intuitively, the compression ratio can be reduced further. Since the noise is

stationary, there are no features at non-zero cyclic frequencies which enables us

to reduce sampling rates even at low SNRs.
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From Theorem 2, we obtain a unique solution to the Nyquist SCF reconstruc-

tion with probability 1 iffM ≥ Kf , or with probability pKf
iffM+1 ≤ Kf ≤M2.

For the case, M ≥ Kf , the minimum sampling ratio is given by (M
N
)min =

Kf

N
.

From (6.9) and (6.10), we have that Kf ∼ N2 and thus
Kf

N
∼ N . Hence, with

increasing N , the resolution in f and α increases, and the minimum sampling

ratio becomes greater than 1. This is mainly because the number of non-zero

points Kf in the SCF is generally greater than M .

We now focus on the range M + 1 ≤ Kf ≤ M2 which guarantees a unique

solution with probability pKf
. From section IV-B, we see that the probability

pKf
is a function of compression ratio and N . To obtain a lower bound on the

minimum sampling rate we study the case when Kf =M2 which is achieved wih

probability pM2 . This choice of Kf is not unrealistic as is shown in section IV-B

where for moderate M and N (M = 18, N = 36), pM2 is greater than 0.98. Thus

the lower bound is given by

(
M

N

)
cyclic

=

√
Kf

N2

=


2
√
K B

fnyq
under high SNR√

4KB2

f2nyq
+ 1

N
− 2KB

N2fnyq
under low SNR

(6.19)

where the low SNR case is obtained from (6.10). In (6.19), as N → ∞, for low

SNR (M
N
)cyclic → 2

√
K B

fnyq
which is same as the result for high SNR. This is

intuitive because as N → ∞, the ratio N
N2 → 0 and therefore the number of PSD

points are negligible compared to the area of the SCF. Thus asymptotically the

minimum sampling ratio is independent of SNR.

The minimum sampling rate for Kf =M(M +1)/2 under a high SNR regime

can similarly be expressed as

(
M

N

)
cyclic

=
−1 +

√
1 + 32KN2B2

f2nyq

2N
. (6.20)
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Comparing the expressions for minimum achievable sampling ratios in (6.18) and

(6.19) corresponding to Energy and Cyclostationary detection respectively, it is

evident that Cyclostationary detectors require lower sampling rates for the same

PSD sparsity levels for both high and low SNR regimes. As this difference in min-

imum sampling ratios is ∼
√
K, where K > 1, with increasing number of signals

in the band/decreasing sparsity, Cyclostationary detectors have correspondingly

increasing gains compared to Energy detectors.

6.5 Discussion And Numerical Results

We consider a wideband channel of bandwidth 300 MHz, occupied with K BPSK

signals one of which is the signal of interest (SOI). Each of the K signals has

an effective signal bandwidth of 15 MHz (taking into account the roll-off factor

of the pulse-shaping filter). As mentioned earlier, we assume an equal in-band

SNR for all signals, and a frame length N = 36 samples. The spectral correlation

peak considered for single-cycle detection is at (α, f) = (2fc, 0). In Section 6.5.1,

we compare the minimum compression ratios of the proposed detector to that of

energy detection at low and high SNRs. In Section 6.5.2, the reconstruction error

is shown in terms of the resulting MSE for various compression ratios. Section

6.5.3 shows the relationship between the required sensing time for a given SNR

and PSD sparsity to reach a desired point on the ROC curve. Finally, Section

6.5.4 shows the effect of the sensing time, compression ratio, and SNR on the

resulting ROC curves.

6.5.1 Theoretical Minimum Lossless Compression

Here, we compare the minimum lossless sampling rates obtained from the Landau

rate in (6.18) and the lower bounds on sampling rates for Cyclostationary detec-

tors corresponding to Kf =M2 and M(M +1)/2 in (6.19) and (6.20). From Fig.

6.3(a), we observe that at high SNRs, when the PSD is fully occupied and there-
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Figure 6.3: Minimum Sampling rate vs PSD Sparsity

fore non-sparse, one cannot sample below the Nyquist rate. However, exploiting

the 2D sparsity in f and α, we can go as low as M/N = 0.23 for Kf = M2,

giving about 80% lower sampling rates. For Kf =M(M +1)/2, we get a gain in

compression ratios of about 70% compared to the Landau rate.

In Fig. 6.3(b), we study the minimum acheivable sampling rates at a low SNR

of 0 dB. In this scenario, with only PSD sparsity, we cannot sample lower than the

Nyquist rate irrespective of the actual number of signals present in the band of

interest as the PSD is not sparse due to high noise power. However, we can exploit

the sparsity in the cyclic frequency domain to sample lower than the Nyquist

rate. Fig. 6.3(b) shows that at low SNRs, with increasing N , the minimum

sampling rates for Cyclostationary detectors converges with the rates achievable

at high SNRs, which acts as a lower bound for the case when Kf =M2. But for

moderate values of N , for instance N = 36, we need about 10% higher sampling

rates compared to the lower bound. Hence, there exists a tradeoff between the

minimum lossless sampling rate and the reconstruction computational complexity

which is also governed by N . In fact, the lower bound on the minimum sampling

rate can only be achieved as N grows, which entails additional computational

complexity during reconstruction.
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Figure 6.4: Minimum Squared Error(MSE) of Reconstructed Feature used for
Signal Detection under Varying Sparsity Levels, K = 1 and K = 3 Signals.

6.5.2 SCF Reconstruction Mean Squared Error (MSE)

In this section, we consider noiseless signals, all of the same signal energy, and

compute the mean squared error (MSE) of the cyclic feature used for detection

at a compression ratio M/N with respect to its energy under no compression

denoted by sxi . We define the MSE as

MSE = E
[
|ŝxi − sxi|2/|sxi|2

]
.

where ŝxi is the cyclic feature used for detection. We use the reconstruction

algorithm with high L (of the order of 1× 104) to ensure that the reconstructed

ŝx is sparse with Kf non-zero spectral peaks, and show the loss in reconstructed

cyclic feature with decreasing compression ratio. Fig. 6.4 shows the MSE versus

compression ratio M/N for the channel populated with K = 1 and 3 signals,

yielding a PSD occupancy of 5% and 15% respectively. The MSE curves show

that there is no loss in spectral correlation peak energy up to a certain threshold

compression ratio, below which the MSE starts increasing. Therefore, when ŝx is

truly sparse (with sufficient L), the sampling rate can be reduced up to a certain
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Figure 6.5: Number of frames(L) required to reach (Pfa, Pd) = (0.1, 0.9) versus
SNR for Nyquist and sub-Nyquist based detectors for a Compression Ratio of
M/N = 0.5, with K = 1 and 3 Signals.

threshold with no loss incurred, a point that we refer to as compression wall. All

compression ratios above this threshold yield a lossless reconstruction. Fig. 6.4

shows this trend for different spectral occupancies, and the vertical lines point

to the location of the corresponding compression walls. Note that the minimum

lossless compression ratios obtained numerically in Fig. 6.4 are higher than the

theoretical bounds computed using Eq. (6.19). This is due to using a low frame

length N , and as a result a small FFT size which results in the features leaking

into other SCF bins, resulting in an effective number of non-zero features greater

than (6.10).

6.5.3 Sensing Time Requirements and Comparison to Nyquist Detec-

tion

At relatively low SNRs below 10 dB, the noise starts to degrade the reconstruction

of the SCF. In this section, we quantify the additional sensing time required to

reach a given (Pfa, Pd) = (0.1, 0.9) at various SNRs and compression ratios using

our reduced-complexity detector.
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Figure 6.6: Sensing Time versus Compression Ratio to reach (Pfa, Pd) = (0.1, 0.9)
for Varying Sparsity Levels, K = 1 and 3 Signals and SNR = -5 dB.

We start by comparing the sensing time (number of frames L) required for

both Nyquist and sub-Nyquist based detectors for varying SNR and sparsity

levels. Fig. 6.5 compares the Nyquist-based sensing time as a function of SNR to

the required sensing time of sub-Nyquist based detector with compression ratio

M/N = 0.5 with a channel populated with K = 1 and 3 signals. The result

shows that the sub-Nyquist detection using our algorithm maintains the same

relationship between the sensing time and SNR as the Nyquist detection. The

slope of the sub-Nyquist curve is equal to that of the Nyquist detector showing

that the reconstruction conserves the linear relationship (in dB scale) between

SNR and sensing time for cyclostationary detectors.

Fig. 6.6 shows the trend of total number of samples/sensing time (L ×M)

versus the compression ratio under a fixed sparsity of K = 1 and 3 signals at

SNR = −5 dB. As expected, the minimum lossless compression ratio (M/N)min

for the given sparsity is reached at about a compression ratio of 0.3 and 0.4

respectively as was also shown in the MSE plot in Fig. 6.4. With decreasing

compression ratio, there is a steady but slight increase in the required sensing

time up to the compression wall. The slight increase in required sensing time is
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Figure 6.7: Pd versus Pfa for Varying Compression Ratio(M
N
) for K = 3 Signals,

Number of Frame Averages L = 15000 and SNR = -10 dB.

a direct result of the noise being present, and therefore additional sensing time

is required to make the SCF have only Kf features. However, operating at a

compression ratio below the compression wall requires an exponentially increasing

number of samples (L×M) in order to operate at the same point on the ROC,

which makes the detection infeasible within a constrained sensing time. This

explains the tradeoff between the sensing time and reduction in sampling rates

where being close to the compression wall is the optimum point to be at since the

maximum savings in terms of sampling rates can be achieved with only a linear

increase in sensing time.

6.5.4 Detection Performance Comparison

In this section we analyze the detection performance of the proposed algorithm

(6.13) for varying parameters. Firstly, we show the effect of varying the com-

pression ratio under a fixed SNR = −10dB and L = 15000 averages for a fixed

sparsity of 15% (K = 3 signals). Fig. 6.7 shows that decreasing the sampling

rate does actually result in a gradual decay in detection performance. The rea-

son behind this is that number of averages L are not enough to ensure the the
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Figure 6.9: Pd versus Pfa for Varying SNR for K = 3 Signals, Compression Ratio
M/N = 0.5 and Number of Frame Averages L = 15000.

noise exhibits no significant cyclic features at a SNR of -10 dB. As a result, tak-

ing into account only Kf spectral peaks according to Eq. (6.19) is not sufficient.

Under enough averages, the MSE curve has shown that the reconstruction is loss-

less until the bound, and therefore the ROC curves will match with increasing L.

The detection performance at sampling rates below the compression wall worsens
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drastically giving a linear relationship between Pd and Pfa.

The presence of unwanted cyclic features at low SNRs in the reconstructed

SCF can be compensated by increasing the number of frame averages L needed

to compute the vectorized auto-correlation matrix rz. Fig. 6.8 shows the im-

provement in detection performance with increasing number of averages for fixed

SNR = −10dB, compression ratio M/N = 0.5 and K = 3 signals. The detection

performance improves with increasing L as this corresponds to additional sens-

ing time and also as the sparsity of the reconstructed SCF converges to its true

sparsity.

Finally, we show the impact of varying SNR on detection performance for

fixed L = 15000, compression ratio M/N = 0.5 and K = 3 signals. From Fig.

6.9 we can see that the detection performance improves with increasing SNR as

1) the signal power increases and 2) with increasing SNR the reconstructed SCF

approaches the true sparsity. In fact, increasing SNR is equivalent to increasing

the number of samples used for averaging the SCF, and the trend is similar to

the ROC curves presented in Fig. 6.8.

6.6 Summary

We have presented in this chapter a compressive sampling approach for wideband

spectrum sensing using cyclostationary detection which directly reconstructs the

test statistic used for cyclostationary detection without reconstructing the time-

domain signal. The resulting measurement matrix is shown to satisfy the RIP

property with high probability, ensuring the stability of the reconstruction al-

gorithm. Further, bounds on the minimum compression ratio are theoretically

derived that ensure the uniqueness of the reconstructed statistic with high prob-

ability. The resulting compression bound is then compared to the theoretical

Landau rate for energy detection, and gains between 73% and 83% in sampling

rates are shown to be achieved under the proposed detector using moderate frame
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length, and hence without incurring high computational complexity. With respect

to the detection performance resulting from the unique stable reconstruction, the

relationship between SNR and sensing time remains linear on a logarithmic scale

as for Nyquist detectors. Finally, it was shown that under the minimum com-

pression ratio, the reconstruction becomes non-unique, which results in detection

performance loss which could be made up for with exponentially increasing sens-

ing time.
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CHAPTER 7

Spectrum Sensing and Modulation

Classification in Fading Environments

We investigate in this chapter the impact of fading on both spectrum sensing and

the blind modulation classification algorithms presented in Chapter 4. As was

discussed in Chapter 2 and 4, signal detection needs to be performed using energy

detection. As a result, we analyze the impact of fading on energy detection, and

then study the performance of the classification algorithms in Chapter 4 under

multipath environments.

We quantify in Section 7.1 the effect of fading in the performance of energy

detection in various communication scenarios. Then, Section 7.2 investigates the

additional energy consumption required to meet the classification accuracy of

95% under realistic multipath environments.

7.1 Energy Detection-Based Spectrum Sensing over κ−µ

Fading Channels

This section investigates the performance of an energy detector over the general-

ized κ−µ [Yac07] fading channels which have been shown to provide remarkably

accurate fading characterization. As expected, the performance of the detector

is highly dependent upon the severity of fading since even small variation of the

fading conditions affect significantly the value of the average probability of detec-

tion. The results presented are particularly useful in assessing the effect of fading
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in energy detection-based cognitive radio communication systems and therefore

they can be used in quantifying the associated trade-offs between sensing perfor-

mance and energy efficiency in cognitive radio networks.

The authors in [DAS07] derived closed-form expressions for the average prob-

ability of detection over Rayleigh, Rice and Nakagami fading channels for both

single-channel and multi-channel scenarios. Likewise, the energy detection perfor-

mance in the case of equal gain combining and Nakagami-m multipath fading has

been investigated in [HR] whereas the corresponding performance in collaborative

spectrum sensing and in relay-based cognitive radio networks has been evaluated

in [ATJ,ATJ11a]. A novel semi-analytic method for analyzing the performance

of energy detection of unknown deterministic signals was reported in [HRT11].

This important work is based on the moment-generating function (MGF) method

and aims to overcome the analytical difficulties that arise from the presence of

the Marcum Q-function. This method was utilized in the case of maximal-ratio

combining (MRC) in the presence of Rayleigh, Rice and Nakagami-m fading

in [HRT11] as well as for the useful case of correlated Rayleigh and Rician fading

channels in [HB11]. Finally, the detection of unknown signals in low signal-

to-noise-ratio (SNR) over K-distributed (K), generalized K (KG) and the very

flexible η−µ fading channels has been recently analyzed in [ATJ11b,RKJ09].

The κ−µ distribution is a generalized fading model that is distinctive for

providing adequate characterization of multipath fading particularly for line-of-

sight (LOS) communication scenarios. It was reported in [Yac07] along with the

η−µ fading model which accounts for non-line-of-sight (NLOS) communication

conditions. The κ−µ fading model has been shown to be particularly flexible

and it includes as special cases the well known Rice, Nakagami-m, Rayleigh

and one-sided Gaussian distributions [Yac07]. The κ−µ fading model has been

shown to represent effectively the small-scale variations of a fading signal in

LOS communications. Physically, this fading model considers a signal composed

of clusters of multipath waves propagating in a non-homogeneous environment.
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Within any one cluster, the phases of the scattered waves are random and have

similar delay times with delay-time spreads of different clusters being relatively

large. The clusters of multipath waves are assumed to have scattered waves

with identical powers while each cluster consists of a dominant component with

arbitrary power. To this effect, the parameters µ and κ correspond to the number

of multipath clusters and the ratio between the total power of the dominant

components and the total power of the scattered waves, respectively. These two

parameters render this fading model remarkably flexible as its capturing range

is particularly broad [Yac07, Fig. 9]. This is also evident by the fact that the

widely known Rice and Nakagami-m fading models are included as special cases

for µ = 1 and κ = 0, respectively [Yac07]. Therefore, this model can provide a

meaningful insight on how fading affects the performance of an energy detector

which ultimately leads to a significant improvement on the design of cognitive

radio systems in terms of energy efficiency and cost.

As mentioned in Chapter 2, energy detection is used in blind scenarios for

signal detection. As such, the wideband received signal is first filtered, and its

energy is computed over a fixed time interval as given by (2.2). Closed form

expressions for the detection probability as a function of the fading environment

variables and number of collaborating users can be found in [SRZ13].

7.1.1 Numerical Results

This section is devoted to the analysis of the behavior of energy detection in

κ−µ fading channels. The corresponding performance is evaluated for different

scenarios of interest through both P d versus the average SNR γ curves and com-

plementary receiver operating characteristics (ROC) curves (Pm versus Pf ). In

addition, the effect of the fading parameters κ, µ and m on the value of Pd is

numerically quantified.

Fig. 7.1.1 demonstrates P d vs γ curves for κ−µ fading for different κ and
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µ values with Pf = 0.1 and u = 2. One can observe that the energy detector

performs better as κ and µ increase due to the higher dominance of the LOS

component and the relative advantage of the multipath effect, respectively. For

example, for the case of γ = 15 dB and κ = 1.0 (fixed), the P d for µ = 0.7 is

nearly 10% higher than for µ = 0.5. In the same context, when µ = 0.7 (fixed),

the P d for κ = 3.0 is 9% higher than for the case of κ = 1.0.
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Figure 7.1: P d vs γ for i.i.d κ−µ fading with Pf = 0.1, u = 2 and different values
for κ and µ.

As the value of γ decreases to negative values, the effect of varying κ and µ

is shown to decrease. Fig. 7.1.1 illustrates the complementary ROC for energy

detection with up to eight collaborating users. The fading scenarios considered

are the same as in the previous case while the average SNR is set to γ = 3dB. As

expected, the performance of the energy detector improves substantially as the

number of users increases.

It is also important to quantify the effect of the fading parameters on the

system performance. Although it is undoubtedly elucidating to carry out this

task analytically, this is unfortunately impossible due to the high algebraic in-
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Figure 7.2: Complementary ROC curves for κ−µ fading with u = 2, κ = 3,
µ = 1.8, γ = 3dB and n collaborating users.

tractability of the involved mathematical representations. As a result, this effect

is only analyzed numerically. To this end, Fig. 7.1.1 depicts the behaviour of P d

versus κ for Pf = 0.1, u = 3, µ = 0.2 and different values of γ. One can observe

the significant deviation of the P d even for small variations of κ and/or γ. For

example, for γ = 13 dB, it is shown that P d = 0.55 and P d = 0.675 for κ = 1

and κ = 4, respectively. Furthermore, for κ = 8, P d = 0.47 for γ = 5dB and

P d = 0.67 for γ = 9dB. Likewise, the behavior of P d versus µ is illustrated in

Fig. 7.1.1 for Pf = 0.1, u = 3, κ = 2.0 and different values of γ. Clearly, for

γ = 10 dB, it is shown that P d = 0.52 and P d = 0.815 for µ = 0.2 and µ = 1.0,

respectively. Also, for µ = 0.8, one obtains P d = 0.55 for γ = 6dB and P d = 0.88

for γ = 13 dB.
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Figure 7.3: P d vs κ for κ−µ fading with Pf = 0.1, u = 3, µ = 0.2 and different
values of γ.

7.2 Blind Signal Classification in the Multipath Environ-

ments

In this section, we analyze the impact of fading on the classification algorithms.

Given that flat fading would essentially result in a loss in SNR, the modulation

classifier presented in Chapter 4 would correctly classify the incoming signals

when the signal meets the design specifications given in Table 4.1. For this

reason, we dedicate this section to studying the impact of frequency selective

fading on the classification performance of the proposed processor.

In typical communication receivers, frequency selective multipath fading is

dealt with by means of equalization. Typically, the transmitter and receiver

agree on a sequence of information symbols referred to as a training sequence

which is used to estimate the frequency selective channel. As such, this training

sequence is repeated every coherence time in order to keep track of the temporal

variations of the channel.

However, channel estimation and equalization can be performed without any
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Figure 7.4: P d vs µ for κ−µ fading with Pf = 0.1, u = 3, κ = 2.0 and different
values of γ.

training sequences. This method is referred to as blind equalization, whereas

the receiver estimates the channel without having the transmitter transmit any

known training sequence. However, blind equalization is performed by exploiting

some known statistical property of the received signal. Most commonly used blind

equalizers are the Constant Modulus Algorithm (CMA) [KS98,TA83,JSE98], and

the Alphabet Matched Algorithm (AMA) [BC06]. However, estimating the chan-

nel blindly without knowledge of the modulation type or order of the received

signal is a challenging task because the cost function being minimized by the

adaptive filter is unknown as it is dependent on the modulation of the incom-

ing signal. For this reason, the conventional blind channel equalizers cannot be

applied in our setting when the receiver’s goal is to classify the incoming signal.

After estimating the received signal parameters such as frequency and timing

information, the transceivers can be properly synchronized and the information

symbols can be extracted. Once the symbols are extracted, AMA algorithms

such as the one presented in [SBS00] can be used for modulation classification.

Intuitively, the receiver performs multiple blind channel equalizations based on
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each of the hypotheses. The hypothesis with the smallest cost function is then

decided as the modulation of the received signal. Note that since the cost function

of AMA algorithms operates on information symbols, blind modulation classifi-

cation can only be performed once the symbols have been extracted. For this

reason, we propose algorithmic methods to improve the classification probability

of the proposed processor in Chapter 4 without estimating the channel. Once

the modulation type has been identified, we use blind equalization techniques to

determine the modulation level of the received signal.

7.2.1 Considered Channel Models

In order to evaluate the performance of our proposed algorithms in multipath

environments, we have adopted practical channel models obtained from the LTE

standard, and have tested our classification algorithms under these standardized

channels. The three channels that we have considered are the 1) Extended Pedes-

trian A model (EPA), 2) Extended Vehicular A Model (EVA), and 3) Extended

Typical Urban model (ETU) [Cha97, Cha07]. The delay spread of these three

channels are 410 ns, 2.5 µs, and 5 µs respectively, and therefore range from the

least to the most severe multipath channels. The power-delay profiles of each of

the three considered channels are given below in Fig. 7.8 where R is the total

number of rays for each of the channel models, and where (ai, τi) denote the

power of the ray i at delay τi. Given the signal bandwidth BW, the total number

of resolved rays is given by L = ⌈BW× rms delay spread⌉. As a result, the power

of each of the resolved paths is obtained by interpolating the power-delay profile

as follows

P [l] =
R−1∑
n=0

an|sinc(l − τnBW)|, ∀l ∈ [0, ..., L− 1]. (7.1)

Each of the channel taps are assumed to follow a Rayleigh distribution, and are

therefore generated as following h[l] = CN ∼ (0, P [l]), and the received signal is
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Figure 7.5: EPA Channel Power-Delay Profile
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Figure 7.6: EVA Channel Power-Delay Profile
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Figure 7.7: ETU Channel Power-Delay Profile

Figure 7.8: Delay-power profiles of different channel models considered in the
LTE standard.
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given by

y[n] =
L−1∑
l=0

h[l]x[n− l] + w[n], (7.2)

where x[n] is the transmitted signal, and where w[n] is the AWGN. Multipath

fading introduces Inter-Symbol Interference (ISI) whenever 1/BW < rms delay

spread.

Multipath fading is typically dealt with by estimating the channel and in-

verting its effect. Channel estimation can be performed by means of a training

sequence, or by exploiting the knowledge of a statistical property of the received

signal also known as blind equalization. Both kinds of equalization require knowl-

edge of the carrier frequency and symbol rate of the received signal. Once ac-

quired, frequency offset estimation (due to Doppler or frequency mismatch) and

timing synchronization are performed on a known preamble. When a training

sequence is utilized, the symbols are first extracted and the channel is estimated

using an MMSE, zero-forcing, LMS, or RLS (among others) equalizer. When

that is not the case, a modulation-dependent cost function is minimized in order

to estimate the channel.

The challenge in blind modulation classification is that 1) fine timing and

frequency estimation is not available in the first few processing blocks, and 2)

blind equalization does not work since the modulation type (and therefore the

cost function of the adaptive filter) is unknown. As a result, we resort to making

our classifiers robust to multipath fading, until enough information about the

received signal is gathered to perform blind equalization.

We show in Fig. 7.9 the modified hierarchical modulation classification tree,

where the highlighted blocks are the ones that need to be modified in order to

meet the required classification accuracy. Note that once timing, frequency, and

symbol extraction is performed, blind equalization can be performed for each

of the possible modulation levels, and the modulation level can be estimation
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based on the smallest cost function. This will be further expanded on at the

end of this section. With respect to computing the total consumed energy, the

chip implemented in [RYU13] consumes 20pJ/cycle, and that number is used to

compute the consumed energy of all processing kernels.

7.2.2 Multi-Carrier vs Single-Carrier Classification

As shown in the top-level diagram of the proposed classifier in 7.9, the first

processing block is the single vs multi-carrier classifier based on the C42 test

statistic computed as shown in [RYU13]. Table 7.1 shows the mean of the C42

statistic for different modulation types and orders.

Since this step is crucial for further classification tasks, we focus on the worst

case scenario, which is the classification of 64-QAM signals vs OFDM signals.

Since the test statistic C42 measures the Gaussianity of the received signal, it

is expected that passing a SC signal through a multipath fading channel will
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Table 7.1: Mean of C42 statistic for different modulation types and orders
Modulation E[C42]

BPSK -2.0

4-PAM -1.36
PSK -1.0
16-QAM -0.68
64-QAM -0.6191
OFDM 0
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Figure 7.10: Mean of the C42 statistic as a function of the number of channel
taps.

increase its Gaussianity, resulting in a loss in classification performance. Fig.

7.10 shows the impact of channel taps on the E[C42], where the channel h[·]

follows the ETU channel model.

As can be seen in Fig. 7.10, the distance between the asymptotic values

of the C42 test statistic for 64-QAM signals and OFDM signals gets closer with

increasing number of taps. We consider in all the results 20 MHz signals, resulting

in ⌈20×106τspread⌉, where τspread is the delay spread of the considered channel. We

show results at an SNR of 10 dB, but report the energy increase of the proposed

solution at both SNRs of 0 and 10 dB.

As shown in Fig. 7.11, 500 samples are enough to guarantee a classification
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Figure 7.11: Performance of MC/SC classifier under varying multipath channels
using a fixed number of samples Nm = 500 samples.

accuracy of 0.95 in AWGN. The yellow rectangle is the area in which we would

like to operate to meet the specifications. We see that the classifier suffers a big

loss in terms of its classification accuracy in all three of the considered multipath

models. Since the ETU model is the most severe one as it has the higher rms

relay spread, the performance of the MC/SC classifier is the worst under this

multipath channel. As channel equalization is not possible at this stage since fine

frequency/timing acquisition are not yet performed, we resort to increasing our

sensing time Nm in order to reduce the variance of the test statistic C42. We show

in Fig. 7.12 the required sensing time increase in order to meet a classification

accuracy of 95% under all three multipath models. We show that in order to

meet the required classification accuracy, the sensing time needs to be increased

by a factor 22x in the worst case scenario of ETU multipath fading. In terms

of energy consumption, this increase in sensing time costs an additional 0.2 µJ

under an SNR of 10 dB, and 4.8 µJ at an SNR of 0 dB.
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Figure 7.12: Sensing time required for each of the channel models in order to
meet the required classification accuracy.

7.2.3 Transmit Parameters Estimation and Modulation Type Classi-

fication

Since both the pre-processors and the modulation type classifier are based on

detecting present cyclic features using the CAC, we focus our attention in this

subsection on the impact of multipath channels on the CAC statistic. Given the

multipath model in (7.2), the CAC of y[·] is related to that of x[·] as follows

Rα
y (ν) =

L−1∑
ℓ=0

h2[ℓ]Rα
x(ν) +

L−1∑
ℓ=0

L−1∑
u=0,u ̸=ℓ

h[ℓ]h[ν]Rα
x(ν + ℓ− u), (7.3)

Rα
y∗(ν) =

L−1∑
ℓ=0

|h[ℓ]|2Rα
x∗(ν) +

L−1∑
ℓ=0

L−1∑
u=0,u ̸=ℓ

h[ℓ]h∗[ν]Rα
x∗(ν + ℓ− u), (7.4)

As a result, although we are interested in computing the CAC at lag ν = 0,

the CAC of y[n] is a function of the CAC of x[n] at non-zero lags, weighted by

the unknown channel. As a result, the newly introduced term in (7.4) can be

thought of as additional noise as it is an undesirable term, and its effect can be

thought of as a loss in cyclic SNR. This behavior is shown in Fig. 7.13, where we
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Figure 7.13: Impact of multipath fading on the CAC at different cyclic frequen-
cies . Top figure corresponds to AWGN case, bottom figure corresponds to the
multipath ETU channel.

demonstrate the impact of the ETU multipath fading on estimating the symbol

rate of the received signal.

As can be seen, the feature at α = 1/T is no longer the strongest feature

under multipath fading, and therefore increasing the sensing time for estimating

the CAC is required in order to boost the cyclic SNR. As we have previously

shown, the modulation type classification cannot meet the required accuracy if

the symbol rate / carrier frequency offsets are above a certain threshold. For

instance, the symbol rate estimate cannot be more than 1000 ppm away from

the true symbol rate at an SNR of 10 dB, and more than 100 ppm at SNR of

0 dB. As a result, we measure the probability that the symbol rate estimate is

within these bounds. Fig. 7.14 shows the required number of samples required in

estimating the CAC within the search window in order to meet the probability

of estimating the symbol rate within 1000 ppm from the true symbol rate.

Under just AWGN, NT = 320 samples are enough to estimate the symbol rate

and meet the maximum offset requirement. As shown in Fig. 7.14, the sensing
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Figure 7.14: Probability of estimating the symbol rate within 1000 ppm from true
symbol rate vs number of samples for AWGN and the 3 considered multipath
channels.

time of the pre-processors needs to be increased by a factor of 4x in order to

meet the required accuracy under all three multipath models. This results holds

as well for estimating the carrier frequency. As a result, the cost of increasing

the sensing time costs an additional 6.9 µJ and 59 µJ at SNRs of 10 and 0 dB

respectively for the symbol rate estimation.

As for the modulation type classification, we summarize in Table 7.2 the

present cyclic features of SC signals, along with the asymptotic normalized feature

vector F. Similarly to estimating the symbol rate and carrier frequency, as the

variance of the CAC increases under multipath fading, the number of samples

needed to estimate the feature vector F used for modulation type classification

need to be increased.

Note that when a given signal has a unique cyclic feature associated with it,

it is therefore easier to differentiate it from other signals. M-QAM and M-PSK

signals only have a single feature that is shared among the rest of the signals,

and the feature at α = 1/T is also to weakest in strength. As a result, M-
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Table 7.2: Cyclic features of all considered SC signals and their respective nor-
malized asymptotic feature vectors.

Modulation Type Present Cyclic Features Asymptotic Feature Vector

M-QAM, M-PSK α = 1/T F = [1, 0, 0, 0, 0, 0]

M-PAM
α = [1/T, 2fc − 1/T, F = [0.13, 0.13,
2fc, 2fc + 1/T ] 0, 0.97, 0, 0.13]

GMSK
α = [1/T, 2fc − 1/2T, F = [0.1, 0,
2fc + 1/2T ] 0.7, 0, 0.7]
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Figure 7.15: Feature vector of M-QAM/M-PSK signals at an SNR of 10 dB using
500 samples under the ETU multipath channel.

QAM/M-PSK signals are the hardest modulation type to classify. Fig. 7.15

shows the feature vector of M-QAM/M-PSK signals at an SNR of 10 dB using

Nc = 500 samples, which is enough to classify M-QAM/M-PSK with a 95%

accuracy in AWGN. Asymptotically, the feature vector converges to [1, 0, 0, 0, 0, 0]

as M-QAM/M-PSK signals only have one feature at their symbol rate. However,

it is shown in Fig. 7.15 that the feature vector of M-QAM/M-PSK signals is

nowhere close its asymptotic value as a result of the multipath.

Although the symbol rate and carrier frequency have been acquired at this

stage and therefore symbol extraction can be performed, the number of hypothe-
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ses to test at this stage using blind equalization is equal to 10 (4/8/16 PSK,

4/16/64 QAM, 2/4/8 PAM, and GMSK). Instead, we keep our hierarchal clas-

sifier that first estimates the modulation type before resorting to estimating the

level using blind equalizers. As a result, we resort to increasing the sensing time

to meet the required classification accuracy here as well. Fig. 7.16 shows the

average feature vector of M-QAM/M-PSK and M-PAM signals versus number of

samples used in estimating the CAC Nc, along with the average probability of

correct classification.

As shown in Fig. 7.16, the feature vector of M-QAM signals converges to the

asymptotic feature vector of [1, 0, 0, 0, 0, 0] with increasing number of samples

Nc, and the probability of correct classification of QAM signals increases as well.

Further, given that M-PAM signals have a unique feature at α = 2fc, their

classification accuracy is not affected as much as M-QAM signals as shown on

the right plot of Fig. 7.2.3. The classification accuracy of 95% is achieved with

an increase of sensing time Nc of 2.2x, which costs an energy increase of 0.07 µJ

at a SNR of 10 dB, and 0.29 µJ at an SNR of 0 dB.

Moreover, achieving the required classification accuracy can be achieved by

means of collaboration of multiple sensors. It can be assumed that since multiple

sensors will be far apart from one another, the channel observed by each of the

sensors will be independent of each other. From (7.4), the impact of the multipath

fading can be mitigated by collaboration among the users. In expectation, we

get

E[Rα
y∗(ν)] →

L−1∑
ℓ=0

E
[
|h[ℓ]|2

]
Rα
x∗(ν) +

L−1∑
ℓ=0

L−1∑
u=0,u ̸=ℓ

E [h[ℓ]h∗[ν]]Rα
x∗(ν + ℓ− u).

(7.5)

Note that the above expression utilized the fact that averaging the CAC of the

noise of different users will converge to zero as the noise is uncorrelated across
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users. Since different channel taps fade independently, then

E[h[ℓ]h∗[ν]] = E[h[ℓ]]× E[h∗[ν]] = 0,

since each of the channel taps have a zero mean. As a result, as the numbers of

sensors tends to infinity, we obtain

E
[
Rα
y∗(ν)

]
→

L−1∑
ℓ=0

E
[
|h[ℓ]|2

]
Rα
x∗(ν), (7.6)

where E[|h[ℓ]|2] reflects the average gain per tap. In effect, this solution results in

removing the impact of the multipath channel on the CAC as the additional term

converges to zero. Further, since noise among different sensors is uncorrelated,

impact of noise has been reduced with collaboration, resulting in a boost in SNR

without the additional need for increase in sensing time on each of the sensors.

7.2.4 Modulation Level Classification under Multipath Fading

Now that we have narrowed down the total number of classes to test in the

level classification step, we resort to blind channel equalization techniques. In

fact, using our previously proposed reduced complexity Kuiper classifier cannot

be applied in multipath channels as it requires knowledge of the CDF for any

given SNR. However, given that the CDF is a function of the channel realization

itself, which is unknown, the level classifier would then fail. Instead, we look

at conventional blind equalization techniques. For M-PSK modulations whose

symbols lie on a circle, the Constant Modulus Algorithm (CMA) is typically

adopted. We let y denote a vector of L demodulated symbols, and w be the

channel estimate. The equalized symbols are therefore obtained by z = wTy.

The CMA algorithm minimizes the following cost function

Ez[(|z|2 − γ)2],where γ =
E[|x|4]
E[|x|2]

. (7.7)
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However, it was shown that the CMA operating on complex symbols can result in

a phase offset with respect to the ideal constellation, and we therefore implement

the CMA using the real part of the demodulated symbols only zr. The CMA

update equation is therefore given by

w[i+ 1] = w[i]− µ < 2(|zr|2 − γ)y∗zr >N , (7.8)

where the < · >N operation is the time averaging operation using N symbols.

Even when the received symbols do not satisfy the CMA criterion, CMA-

based equalization can still result in a coarse estimate of the true channel h. As

a result, the CMA is used as an initial step to get a good coarse estimate of the

true channel. Then, we resort to an Alphabet Matched Algorithm (AMA) that

maps the received demodulated symbols to a set of known information symbols

of cardinality M. The AMA cost function is given by

Ez

[
1−

M∑
i=1

e−
|z−c(i)|2

2σ2

]
, (7.9)

where c(i) are the information symbols that we wish to map z to, and M is total

number of symbols. When all symbols z lie on top of the symbols c, the cost

function tends to zero. The update equation is derived and is given by

w[i+ 1] = w[i]− µ

2σ2

M∑
i=1

< y∗(z − c(i))e−
|z−c(i)|2

2σ2 >N . (7.10)

The reason the AMA equalizer cannot be used without the CMA is because

it requires a good channel estimate for the AMA algorithm to converge. For

this reason, we adopt the following equalization strategy under the example of

differentiating between 4/16/64 QAM. For M ∈ [4, 16, 64], we 1) Run CMA

under hypothesis HM until cost function is below threshold or for a fixed number

of iterations, 2) Switch to AMA equalizer to map symbols to constellation of size

M. The hypothesisHM with the lowest cost function is declared as the modulation
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Figure 7.17: Evolution of the cost function with varying number of iterations
when the input signal is 4, 16, and 64 QAM. Switch to AMA equalization is done
after 100 CMA iterations.

level of the signal being classified.

Fig. 7.17 shows the evolution of the cost function following the algorithm

described above. Once the CMA algorithm coarsely estimates the channel itself,

the AMA equalizer kicks in. As shown in Fig. 7.17, the cost function of M-QAM

is the smallest after the AMA equalization step when the input is M-QAM, for

M being 4, 16, and 64.

As a result, this method shows that when a coarse estimate of the channel

can be obtained through the CMA, the AMA can map symbols to their true

symbols, and therefore symbol demodulation and modulation level classification

can be performed. An example of the evolution of the equalized/demodulated

symbols over different iterations is given in Fig. 7.18.

As was noted earlier, the AMA algorithm does not converge unless a good

channel estimate is already obtained. However, the CMA equalizer performance

worsens with decreasing SNR which degrades the classification performance. We

give in Table 7.3 the classification accuracies of 4, 16 and 64 QAM as a function

of the received SNR, in addition to the average classification accuracy where the
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Figure 7.18: Demodulated/equalized symbols z as a function of iterations when
the equalizer input is a 16-QAM signal.

Table 7.3: Average probability of level classification for various SNR levels when
the signals are 20 MHz 4-16-64 QAMmodulated passed through the ETU channel
model.

SNR (dB) 10 12 14 16 18 20
Pc(4-QAM) 1 1 1 1 1 0.95
Pc(16-QAM) 1 1 0.9 0 0 0
Pc(64-QAM) 1 1 1 1 1 1
Average Pc 1 1 0.96 0.67 0.67 0.65

average is taken with respect to the classification of 4, 16, and 64 QAM signals.

As can be seen, the average classificationa accuracy is degraded as a result of

misclassifying 16-QAM signals, which are classified as 64-QAM signals instead.

We next compute a rough energy estimate of the proposed equalizer with the

assumption that each clock cycle consumes 20 pJ/cycle as was the case in the first

version of our chip. If we assume that an accumulation of N symbols takes N

clock cycles, then each iteration needs around N clock cycles. Since convergence

requires around 150 iterations, that sums up to 150N clock cycles, where N is

1000 in our examples, so 150, 000 clock cycles needed for each equalizer. Since we

need to run a blind equalization for each of the 3 modulation levels, 450, 000 total

cycles are required for classification. Assuming the 20 pJ/clock cycle number, the

energy consumption is estimated at 9 µJ, as compared to 0.15 µJ for the Kuiper
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Table 7.4: Energy comparison of AWGN vs. multipath fading at SNR of 10 dB
and 0 dB.
Processing Block AWGN Multipath AWGN Multipath

(SNR 10 dB) (SNR 10 dB) (SNR 0 dB) (SNR 0 dB)

MC/SC identification 10 nJ 200 nJ 0.24 uJ 5.04 uJ
1/T Estimation 2.3 uJ 9.2 uJ 19.5 uJ 78.5 uJ
fc Estimation 8 uJ 32 uJ 96 uJ 384 uJ
Mod. Type Class. 60 nJ 132 nJ 240 nJ 528 nJ

classifier [URP11] that works in AWGN.

Table 7.4 summarizes the total energy consumption of the proposed classifier

(with the exception of the level classification) at SNRs of 0 and 10 dB for both

AWGN and worst case ETU multipath fading.

7.3 Summary

We have analyzed in this chapter the performance of our proposed spectrum

sensing and modulation classifier in fading environments. We have analyzed the

sensing performance of energy detection under severe fading environments, and

have shown that collaborative detection can substantially improve the detection

performance under fading environments. With respect to modulation classifica-

tion, we have addressed the challenges with blind channel equalization in the con-

text of modulation classification. Then, we have quantified the additional energy

consumption required to meet the desired classification accuracy under severe

multipath environments, and have analyzed the performance of blind channel

equalization algorithms that we used to determine the modulation level of the

received signal.
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CHAPTER 8

Conclusions

8.1 Research Contributions

In this thesis, we have analyzed some of the challenges associated with wideband

cyclostationary spectrum sensing and modulation classification. We have looked

at algorithmic challenges that arise due to wideband circuitry imperfections, and

also energy challenges that arise due to blindly processing the wideband spectrum.

Overall, the findings provided in this thesis can be used to design future wideband

cognitive radios that are both energy efficient, and robust to various wideband

impairments. The contributions of this thesis are listed below

• We have presented in this thesis some of the challenges that arise when

cognitive radios operate in wideband channels. Imperfect knowledge of the

transmit parameters such as the signal’s symbol rate and carrier frequency

are shown to degrade the performance of cyclostationary detectors, espe-

cially in the low SNR regimes. In fact, increasing the sensing time under

non-zero cyclic frequency offsets results in a degradation in the cyclic feature

to be detected. As a result, although increasing the sensing time suppresses

the noise, the detection performance of cyclostationary detectors degrades

with increasing sensing time under frequency offsets. It is shown that multi-

frame processing of the incoming samples makes the signal detector more

robust to cyclic frequency offsets. Further, we considered the sampling clock

offset defined as an unknown offset in the sampling clock at the ADC stage

as an additional impairment. Using the proposed detector, reliable signal
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detection can be guaranteed until relatively large cyclic frequency offsets

at low SNRs. We showed that the proposed multi-frame statistic achieves

the most gains compared to the conventional detector when the cyclic fre-

quency offset is more severe than the sampling clock offset. Further, we

formulated an optimization problem that solves for the optimum method

to split the incoming samples that achieves the best average detection per-

formance, where the average is taken with respect to the distribution of

both the cyclic frequency and sampling clock offsets.

• We have proposed a low-power modulation classification processor that can

differentiate among multi-carrier and single-carrier modulations, estimate

their transmit parameters, their modulation type, and determine if they are

spread signals. Further, we have developed algorithms not presented in this

thesis that can extract the symbols using the estimated parameters, and

estimate the modulation order of the signal being classified. Unlike other

cyclic-based modulation classifiers which assume accurate knowledge of the

transmit parameters, we studied the tradeoffs between the estimation of the

signal’s symbol rate and carrier frequency, and the achievable classification

accuracy. We showed that there exists a feasible region that determines

which accuracies on the symbol rate and carrier frequency can be tolerated

while achieving the required classification accuracy of 95%. Then, we for-

mulated an optimization problem to minimze the total consumed energy.

The result of this optimization resulted in an area in the feasible region

in which the total energy is minimized. Further, we optimized the proces-

sor architecture by the co-design methodology to enhance block reusability

and reconfigurability. These algorithms for this modulation classification

processor are selected to have functional similarities in order to build a

processing architecture that maximizes hardware utilization. Finally, we

analyzed the impact of fading on the signal detection that is performed

prior to the the modulation classification. We considered composite models
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that take into account both small and large scale fading through the κ− µ

fading model, and show the impact of different fading models on the de-

tection performance of energy detectors. Further, we analyze the impact of

multipath fading in frequency selective environments on the classification

accuracy of the proposed processor, and proposed algorithmic methods to

achieve the required classification accuracy under unkown channels.

• With respect to the analog impairments, we analyzed the impact of RF

front-end nonlinearities on the detection performance of cyclostationary

and energy detectors. Although nonlinearities can be mitigated by passing

the received signal through an attenuator after the antenna, this solution

results in a loss in dynamic range. The presence of strong blockers in the

wideband spectrum can generate intermodulation terms that fall subbands

within the bandwidth of interest. We have shown that that under low

signal to interference ratios, front-end nonlinearities severely degrade the

detection performance of both energy and cyclostationary detectors. We

theoretically derived the probability of false alarm and detection of both

detectors under a finite number of samples, and showed that the receiver

operating characteristic curve is dependent not only on the strength of the

blockers, but also on their modulation type. As a result, unlike the case

where the interference is generated from adjacent strong signals, setting

the detection threshold requires knowing the modulation type and order

of the blockers. This further motivates the need for modulation classifica-

tion, which can be utilized to guarantee the threshold, and therefore the

operating point on the ROC curve. Further, we proposed an interference

cancellation algorithm which re-generates the intermodulation term from

the blockers at baseband, and subtracts it from the I/Q samples of the

subband of interest. We have shown that the interference cancellation com-

pletely recovers the loss in detection performance when the blockers’ signal

to interference ratio is above 30 dB. Under lower ratios, the cancellation
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algorithm shows a loss with respect to the ideal detection performance, but

still improves on the performance of uncompensated detectors.

• We have also investigated the possible sampling rate reduction at the ADC

that could be achieved when the wideband spectrum is sparse. We ana-

lyze a compressive sensing solution based on cyclostationary detection to

reconstruct the spectral correlation function of the acquired sub-Nyquist

samples. Contrary to the typical compressive sensing formulations which

usually result in a LASSO formulation that cannot be solved in closed-form,

we reconstructed the SCF of the wideband spectrum when the frequency

support is known at the receiver. We formulated the SCF reconstruction

problem as a least-square problem which has a closed-form solution, and is

therefore easily implementable in hardware. Based on this formulation, we

studied the uniqueness of the reconstructed SCF by analyzing the spark and

restricted isometry property of the measurement matrix. The results show

that cyclostationary detection from sub-Nyquist samples can be achieve

more sampling rate reductions than energy detectors as a result of the ad-

ditional sparsity on the SCF. In addition, the sampling rate can be reduced

up to a compression ratio threshold that we refer to as the compression wall

with minimal increase in the sensing time to operate at the same point on

the receiver operating curve. When the compression ratio is pushed below

the compression wall, the sensing time required to achieve the desired de-

tection and false alarm probabilities increases exponentially. With respect

to the computational complexity of the proposed sub-Nyquist detector, we

have shown that minimum compression ratio can only be achieved with in-

creasing FFT size on the DSP side which reduces the leakage in the SCF. As

a result, there exists a tradeoff between the achievable compression ratio,

and the computational complexity on the digital side.
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8.2 Future Work

Although LNA nonlinearities are the most prominent source of nonlinearities in

wideband receivers, other impairments such as mixer nonliearities, and I/Q mis-

match can result in further degradation in the spectrum sensing performance.

In order to get more intuition regarding the performance of spectrum sensing

algorithms in commercial radio recievers, the effects of these impairments should

be quantified, and the adaptive cancellation solution should be modified to com-

pensate for the composite effect of the different analog impairments. Further,

although the performance of the proposed interefence cancellation algorithm de-

grades when the blockers’ self intereference is relatively high, signal demodulation

and re-modulation can be performed knowing the blocker’s modulation type and

order. By doing so, the blockers’ self-interference can be suppressed, and there-

fore removing the limitation of the proposed compensator.

The developed compressive sensing algorithm and its analysis was performed

for the case where the frequency support of the wideband spectrum is known.

An extension of this work could be to study the sampling rate reduction gains

that can be achieved with blind cyclostationary compressive sensing algorithms

that do not assume knowledge of the frequency support.
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APPENDIX A

Appendix

A.1 SecondMoment of Multi-Frame Statistic Under Noise

Only

We start with the noise conjugate multi-frame test statistic under a zero lag ν = 0

and we expand the term of interest as follows

|R̂αk
w∗(0)|2 =

1

M2N2

M∑
m1=1

M∑
m2=1

N−1∑
n1=0

N−1∑
n2=0

|wm1 [n1]|2×

|wm2 [n2]|2e−j2παk(n1−n2)Ts . (A.1)

Whenm1 ̸= m2, wm1 [n1] and wm2 [n2] are independent for all n1, n2 ∈ [0, ..., N−

1]. Therefore, E[|wm1 [n]|2|wm2 [n]|2] = E[|wm1 [n]|2]E[|wm2 [n]|2] = σ4
w.

The expectation is therefore computed as

E[|R̂αk
w∗(0)|2 | m1 ̸= m2] =

σ4
w

M2N2

M∑
m1=1

M∑
m2=1
m2 ̸=m1

N−1∑
n1=0

N−1∑
n2=0

e−j2παk(n1−n2)Ts = σ4
w

(M − 1)

MN2
· sin

2(παkNTs)

sin2(παkTs)
(A.2)
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When m1 = m2, we expand Eq. (A.1) as

|R̂αk
w∗(0)|2 =

1

M2N2

M∑
m=1

N−1∑
n=0

|wm[n]|4 +
1

M2N2

M∑
m=1

N−1∑
n1=0

N−1∑
n2=0

|wm[n1]|2|wm[n2]|2e−j2παk(n1−n2)Ts . (A.3)

It can be shown after some manipulations that the expectation of Eq. (A.3) is

equal to

E[|R̂αk
w∗(0)|2 | m1 = m2] =

2σ4
w

MN
+

σ4
w

MN2

(
sin2(παkNTs)

sin2(παkTs)
−N

)
. (A.4)

Finally, adding Eq. (A.2) and (A.4), we obtain

E[|R̂αk
w∗(0)|2] =

σ4
w

MN
+
σ4
w sin

2(παkNTs)

N2 sin2(παkTs)
. (A.5)

In a similar procedure, it can be shown that the second moment of the non-

conjugate CAC is equal to

E[|R̂αk
w (0)|2] = 2σ4

w

MN
, (A.6)

which is independent of the cyclic frequency αk.

Under non-zero lag ν, the second-order moment of the multi-frame CAC can

be found as follows

|R̂αk
w∗(ν)|2 =

1

M2N2

M∑
m1=1

M∑
m2=1

N−1∑
n1=0

N−1∑
n2=0

wm1 [n1]w
∗
m1

[n1 − ν]

w∗
m2

[n2]wm2 [n2 − ν]e−j2παk(n1−n2)Ts .

When m1 ̸= m2, E[|R̂αk
w∗(ν)|2] = 0 as none of the indices coincide. Similarly, when

m1 = m2, the second-order moment is only non-zero when n1 = n2. As a result,
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we obtain the following result

|R̂αk
w∗(ν)|2=

1

M2N2

M∑
m=1

N−1∑
n=0

wm[n]w
∗
m[n− ν]w∗

m[n]wm[n− ν],

the expectation of which is given by

E[|R̂αk
w∗(ν)|2] =

σ4
w

MN
. (A.7)

Similarly, it can be shown that the second-order moment of the non-conjugate

multi-frame CAC under H0 under non-zero lag yields the same result as above,

namely

E[|R̂αk
w (ν)|2] = σ4

w

MN
. (A.8)

A.2 SecondMoment of Multi-Frame Statistic Under Noise-

less Conditions With No Impairments

We start by finding the theoretical second moment of the conjugate CAC at any

lag ν, which we expand as

R̂αk
s∗ (ν) =

1

MN

M∑
m=1

N−1∑
n=0

∞∑
ℓ=−∞

∞∑
j=−∞

a(ℓT )×

p(nTs − ν − ℓT )a∗(jT )p(nTs − jT )e−j2παknTs , (A.9)

where T denotes the symbol period of the signal of interest, and Ts denotes the

sampling period. We assume a pulse shape p(t) with support limited to [0, T ).

Therefore,

p(nTs − ν − ℓT ) ̸= 0 when ℓ =

⌊
nTs − ν

T

⌋
, (A.10)
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and Eq. (A.9) gets simplified to

R̂αk
s∗ (ν) =

1

MN

M∑
m=1

N−1∑
n=0

∣∣∣∣a(⌊nTsT
⌋
T

)∣∣∣∣2×
p

(
nTs −

⌊
nTs
T

⌋
T

)
p

(
nTs −

⌊
nTs − ν

T

⌋
T

)
e−j2παknTs . (A.11)

We can write

|R̂αk
s∗ (ν)|

2 =
1

M2N2

M∑
m1=1

M∑
m2=1

N−1∑
n1=0

N−1∑
n2=0

∣∣∣a(⌊n1

L

⌋
T
)∣∣∣2×

∣∣∣a(⌊n2

L

⌋
T
)∣∣∣2 p(n1T/L−

⌊n1

L

⌋
T
)
×

p
(
n1T/L−

⌊n1

L
− ν

T

⌋
T
)
p
(
n2T/L−

⌊n2

L

⌋
T
)
×

p
(
n2T/L−

⌊n2

L
− ν

T

⌋
T
)
e−j2παk(n1−n2)Ts . (A.12)

For ease of notation, we denote |a(⌊n1

L
⌋T )|2 and |a(⌊n2

L
⌋T )|2 by |a(n1)|2 and

|a(n2)|2 respectively. We split Eq. (A.12) into two case: m1 = m2 and m1 ̸= m2.

In the following two cases, we drop the 1
M2N2 factor.

Case 1: m1 = m2

For ease of notation, we denote by k both indicesm1 andm2. Eq. (A.12) therefore

becomes

|R̂αk
s∗ (ν)|2 =

M∑
m=1

N−1∑
n=0

|a(n)|4g(n, n, ν)+

M∑
m=1

N−1∑
n1=0

N−1∑
n2=0
n2 ̸=n1

|a(n1)|2|a(n2)|2g(n1, n2, ν)e
−j2παk(n1−n2)Ts . (A.13)

Using the fact that symbols are independent from each other, we obtain

E[|R̂αk
s∗ (ν)|2 | m1 = m2] =u4M

N−1∑
n=0

g(n, n, ν)+

Mu22

[
N−1∑
n1=0

N−1∑
n2=0

g(n1, n2, ν)−
N−1∑
n=0

g(n, n, ν)

]
. (A.14)
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Using the definitions in (3.18), Eq. (A.14) simplifies to

E[|R̂αk
s∗ (0)|2 | m1 = m2] = u4P4M + u22M [|P2|2 − P4]. (A.15)

Case 2: m1 ̸= m2

Under Case 2, since the information symbols of different frames are independent,

the second moment is equal to

E[|R̂αk
s∗ (ν)|

2 |m1 ̸=m2] =u22M(M − 1)u4×
N−1∑
n1=0

p

(
n1T

L
−
⌊n1

L

⌋
T

)
p

(
n1T

L
−
⌊n1

L
− ν

T

⌋
T

)
×

N−1∑
n2=0

p

(
n2T

L
−
⌊n2

L

⌋
T

)
p

(
n2T

L
−
⌊n2

L
− ν

T

⌋
T

)
e−j2παk(n1−n2)Ts

=u22|P2|2M(M − 1). (A.16)

Finally, adding the results of Eq. (A.15) and (A.16) and bringing back the 1
M2N2 ,

we obtain the final result for the second moment of the conjugate CAC as

E[|R̂αk
s∗ (ν)|2] =

P4

MN2
[u4 − u22] +

|P2|2u22
N2

. (A.17)

The result for the second moment of the non-conjugate CAC can be obtained in

a similar fashion. In fact, the final expression in Eq. (A.17) still holds for the

non-conjugate CAC second moment where P2 is replaced by P
′
2.
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