Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Biaxial Mechanical Characterizations of Atrioventricular Heart Valves.

Published Web Location

https://doi.org/10.3791/59170
Abstract

Extensive biaxial mechanical testing of the atrioventricular heart valve leaflets can be utilized to derive optimal parameters used in constitutive models, which provide a mathematical representation of the mechanical function of those structures. This presented biaxial mechanical testing protocol involves (i) tissue acquisition, (ii) the preparation of tissue specimens, (iii) biaxial mechanical testing, and (iv) postprocessing of the acquired data. First, tissue acquisition requires obtaining porcine or ovine hearts from a local Food and Drug Administration-approved abattoir for later dissection to retrieve the valve leaflets. Second, tissue preparation requires using tissue specimen cutters on the leaflet tissue to extract a clear zone for testing. Third, biaxial mechanical testing of the leaflet specimen requires the use of a commercial biaxial mechanical tester, which consists of force-controlled, displacement-controlled, and stress-relaxation testing protocols to characterize the leaflet tissues mechanical properties. Finally, post-processing requires the use of data image correlation techniques and force and displacement readings to summarize the tissues mechanical behaviors in response to external loading. In general, results from biaxial testing demonstrate that the leaflet tissues yield a nonlinear, anisotropic mechanical response. The presented biaxial testing procedure is advantageous to other methods since the method presented here allows for a more comprehensive characterization of the valve leaflet tissue under one unified testing scheme, as opposed to separate testing protocols on different tissue specimens. The proposed testing method has its limitations in that shear stress is potentially present in the tissue sample. However, any potential shear is presumed negligible.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View