Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

The roles of apo(a) size, phenotype, and dominance pattern in PCSK9-inhibition-induced reduction in Lp(a) with alirocumab[S]

Abstract

An elevated level of lipoprotein (a) [Lp(a)] is a risk factor for CVD. Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9, is reported to reduce Lp(a) levels. The relationship of Lp(a) reduction with apo(a) size polymorphism, phenotype, and dominance pattern and LDL cholesterol (LDL-C) reduction was evaluated in a pooled analysis of 155 hypercholesterolemic patients (75 with heterozygous familial hypercholesterolemia) from two clinical trials. Alirocumab significantly reduced total Lp(a) (pooled median: -21%, P = 0.0001) and allele-specific apo(a), an Lp(a) level carried by the smaller (median: -18%, P = 0.002) or the larger (median: -37%, P = 0.0005) apo(a) isoform, at week 8 versus baseline. The percent reduction in Lp(a) level with alirocumab was similar across apo(a) phenotypes (single vs. double bands) and carriers and noncarriers of a small size apo(a) (≤22 kringles). The percent reduction in LDL-C correlated significantly with the percent reduction in Lp(a) level (r = 0.407, P < 0.0001) and allele-specific apo(a) level associated with the smaller (r = 0.390, P < 0.0001) or larger (r = 0.270, P = 0.0183) apo(a) sizes. In conclusion, alirocumab-induced Lp(a) reduction was independent of apo(a) phenotypes and the presence or absence of a small size apo(a).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View