Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Longitudinal multivariate normative comparisons

Published Web Location

https://doi.org/10.1002/sim.8850
Abstract

Motivated by the Multicenter AIDS Cohort Study (MACS), we develop classification procedures for cognitive impairment based on longitudinal measures. To control family-wise error, we adapt the cross-sectional multivariate normative comparisons (MNC) method to the longitudinal setting. The cross-sectional MNC was proposed to control family-wise error by measuring the distance between multiple domain scores of a participant and the norms of healthy controls and specifically accounting for intercorrelations among all domain scores. However, in a longitudinal setting where domain scores are recorded multiple times, applying the cross-sectional MNC at each visit will still have inflated family-wise error rate due to multiple testing over repeated visits. Thus, we propose longitudinal MNC procedures that are constructed based on multivariate mixed effects models. A χ2 test procedure is adapted from the cross-sectional MNC to classify impairment on longitudinal multivariate normal data. Meanwhile, a permutation procedure is proposed to handle skewed data. Through simulations we show that our methods can effectively control family-wise error at a predetermined level. A dataset from a neuropsychological substudy of the MACS is used to illustrate the applications of our proposed classification procedures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View