Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

All-Sputtered, Superior Power Density Thin-Film Solid Oxide Fuel Cells with a Novel Nanofibrous Ceramic Cathode.

  • Author(s): Lee, Yoon Ho;
  • Ren, Haowen;
  • Wu, Erik A;
  • Fullerton, Eric E;
  • Meng, Ying Shirley;
  • Minh, Nguyen Q
  • et al.
Abstract

Thin film solid oxide fuel cells (TF-SOFCs) are attracting attention due to their ability to operate at comparatively lower temperatures (400-650 °C) that are unattainable for conventional anode-supported SOFCs (650-800 °C). However, limited cathode performance and cell scalability remain persistent issues. Here, we report a new approach of fabricating yttria-stabilized zirconia (YSZ)-based TF-SOFCs via a scalable magnetron sputtering process. Notable is the development and deposition of a porous La0.6Sr0.4Co0.2Fe0.8O2.95(LSCF)-based cathode with a unique fibrous nanostructure. This all-sputtered cell shows an open-circuit voltage of ∼1.0 V and peak power densities of ∼1.7 and ∼2.5 W/cm2 at 600 and 650 °C, respectively, under hydrogen fuel and air along with showing stable performance in short-term testing. The power densities obtained in this work are the highest among YSZ-based SOFCs at these low temperatures, which demonstrate the feasibility of fabricating exceptionally high-performance TF-SOFC cells with distinctive dense or porous nanostructures for each layer, as desired, by a sputtering process. This work illustrates a new, potentially low-cost, and scalable platform for the fabrication of next-generation TF-SOFCs with excellent power output and stability.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View