Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Differential Distributed Space-Time Coding With Imperfect Synchronization in Frequency-Selective Channels


Differential distributed space-time coding (D-DSTC) is a cooperative transmission technique that can improve diversity in wireless relay networks in the absence of channel information. Conventionally, it is assumed that channels are flat-fading and relays are perfectly synchronized at the symbol level. However, due to the delay spread in broadband systems and the distributed nature of relay networks, these assumptions may be violated. Hence, inter-symbol interference (ISI) may appear. This paper proposes a new differential encoding and decoding process for D-DSTC systems with multiple relays over slow frequency-selective fading channels with imperfect synchronization. The proposed method overcomes the ISI caused by frequency-selectivity and is robust against synchronization errors while not requiring any channel information at the relays and destination. Moreover, the maximum possible diversity with a decoding complexity similar to that of the conventional D-DSTC is attained. Simulation results are provided to show the performance of the proposed method in various scenarios.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View