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Testing for Moderate Explosiveness in the Presence of Drift

Gangzheng Guo
School of Economics, Huazhong University of Science and Technology

Shaoping Wang∗

School of Economics, Huazhong University of Science and Technology

Yixiao Sun
Department of Economics, University of California, San Diego

Abstract

This paper considers a moderately explosive autoregressive(1) process with drift where
the autoregressive root approaches unity from the right at a certain rate. We first develop
a test for the null of moderate explosiveness under independent and identically distributed
errors. We show that the t statistic is asymptotically standard normal regardless of whether
the errors are Gaussian. This result is in sharp contrast with the existing literature wherein
nonstandard limiting distributions are obtained under different model assumptions. When
the errors are weakly dependent, we show that the t statistic based on a heteroskedasticity
and autocorrelation robust standard error follows Student’s t distribution in large samples.
Monte Carlo simulations show that our tests have satisfactory size and power performance
in finite samples. Applying the asymptotic t test to ten major stock indexes in the pre-2008
financial exuberance period, we find that most indexes are only mildly explosive or not
explosive at all, which implies that the bout of the irrational rise was not as serious as
previously thought.

Keywords: Heteroskedasticity and Autocorrelation Robust Standard Error, Irrational Ex-
uberance, Local to Unity, Moderate Explosiveness, Student’s t Distribution, Unit Root.

JEL: C12; C22

1 Introduction

Explosive processes have attracted much recent attention. Phillips and Magdalinos (2007a)
consider moderately explosive (ME) processes where the autoregressive (AR) root is greater
than unity but its deviation from unity decreases as the sample size increases. Such triangular
array data processes have been shown to capture the ME behavior in many economic and
financial time series. The work of Phillips and Magdalinos (2007a, hereafter PM) has stimulated
many subsequent studies including Phillips and Magdalinos (2007b), Magdalinos and Phillips
(2009), Phillips, Magdalinos, and Giraitis (2010), Phillips, Wu, and Yu (2011), Magdalinos
(2012), and Phillips, Shi, and Yu (2014, 2015a,b), among others.

Research on explosive processes can be traced back to White (1958) and Anderson (1959).
For a simple Gaussian AR(1) process yt = ρyt−1 + ut (t = 1, 2, . . . , T ) with fixed ρ > 1, y0 = 0,

∗Corresponding author. Email address: wangshaoping@hust.edu.cn. Tel.: +86 13871474978. Address: School
of Economics, Huazhong University of Science and Technology, Wuhan, China.
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and independent and identically distributed (i.i.d.) Gaussian errors {ut}, White (1958) shows
that ρT (ρ̂ − ρ)/(ρ2 − 1) converges to a standard Cauchy distribution, where ρ̂ is the ordinary
least-squares (OLS) estimator of ρ. Anderson (1959) points out that the normality of the error
process is necessary for this result. This poses a challenge in the application of explosive
processes, as we have to use different reference distributions for different distributions of the
errors, which are often not known.

Phillips and Magdalinos (2007a) show that for an ME process wherein ρ is parametrized
as ρ := ρT = 1 + c/kT for some c > 0 and kT = o(T ) → ∞ as T → ∞, the limiting behavior
of the OLS estimator of ρ is invariant to the distribution of the errors. More specifically, it is
shown that the coefficient-based statistic kTρ

T
T (ρ̂− ρT )/(2c) converges weakly to the standard

Cauchy distribution, even if the errors are not Gaussian. Inference can then be made without
accounting for the exact distribution of the errors in large samples. More importantly, compared
with the original explosive processes of White (1958) and Anderson (1959), ME processes are
better able to capture the empirical regularities found in many economic and financial data,
such as the Dow Jones Industrial Average.

In this paper, we generalize PM (2007a) to allow for an intercept in the AR(1) process
and develop an asymptotically valid test for moderate explosiveness. The ME process under
consideration, i.e., yt = µT + ρT yt−1 + ut, has two components: the stochastic ME component
and the deterministic drift trend component, both of which can render the process explosive.
We parametrize the deviation of ρT from unity by ρT = 1 + 1/Tα0 for some α0 ∈ (0, 1).
The index α0 then completely describes the degree of the explosive behavior. Generally, the
deterministic trend component dominates the stochastic trend component, but when the drift
µT decreases to zero at a certain rate with the sample size, e.g. µTT

α0/2 → 0, the stochastic
trend will become stronger in relation to the drift component. This intuitively explains why the
limiting distribution of the usual t-type test statistic for the integrated time series with drift is
different from the one without drift. For more detailed discussion, see Dickey and Fuller (1979)
, Dickey and Fuller (1981), and MacKinnon (1996) in the unit root setting; Phillips (1987),
Phillips and Perron (1988), and Müller and Graham (2003) in the local-to-unity setting; Phillips
et al. (2014) and Phillips et al. (2015a,b) in the periodically collapsing explosive bubble setting.
In contrast, this paper shows that under the null of moderate explosiveness, the asymptotic
distributions of the OLS t statistic are the same for the cases with and without drift, even
though the asymptotic distributions of the underlying OLS estimator of ρT are different. In
particular, in the presence of i.i.d. errors, the OLS t statistic is asymptotically standard normal
regardless of whether the drift is small or large, or simply equal to zero. This invariance
property releases us from having to choose a reference distribution in practice. Compared with
the nonstandard test of Wang and Yu (2015), who also accommodate a drift but assume a fixed
ρ greater than 1, our asymptotic normal test is much easier to use, as critical values are readily
available.

Another contribution of this paper is that we extend our basic results to allow for weakly
dependent errors. The limiting distribution of the OLS estimator of ρT is still normal or
mixed normal, but it now depends on the long-run variance (LRV) of the error process. We
employ the simple average of the first few periodograms to estimate the LRV and construct
the heteroskedasticity and autocorrelation robust (HAR) standard error of the OLS estimator
of ρT . Under the fixed-smoothing asymptotics where the number of periodograms used in the
LRV estimation is held fixed, we show that the t statistic based on the HAR standard error
follows Student’s t distribution in large samples. This result holds regardless of whether a drift
term is present or not. The asymptotic t test achieves double robustness: it is asymptotically
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valid no matter whether the errors are autocorrelated or not, and whether the drift is small,
large or is simply not present.

Monte Carlo (MC) simulations show that the asymptotic normal test under i.i.d. errors and
the asymptotic t test under weakly dependent errors have accurate size and satisfactory power
in finite samples. When it is not clear whether the errors are i.i.d., we recommend using the
HAR t test with a data-driven smoothing parameter.

To identify the degree of the moderate explosiveness of a time series in practice, we propose
a two-step empirical testing strategy that involves pretesting.1 The pretesting aims at detecting
whether the series is an explosive process. This is necessary, as the ME process is essentially an
explosive process. After finding evidence on explosiveness, we proceed to employ our asymp-
totic t test to obtain a confidence interval for the explosive index that measures the degree of
explosiveness. The confidence interval consists of all possible null values of ρT or α0 that are
not rejected by our test. Categorizing the seemingly severe or slight explosiveness according to
α0 will be helpful in bubble identification, classification, and provision of warning. We apply
our empirical testing strategy to ten major stock indexes in various countries/districts of the
world in a period before the 2008 financial crisis. Interestingly, we find that most indexes are
only mildly explosive, or not explosive at all. The pre-2008-financial-crisis bout of irrational
rise did not seem so serious as previously thought. This is consistent with Greenspan (2008)’s
perception that the financial bubble was not so large.

The rest of the paper is organized as follows. Section 2 establishes the limit theory for ME
processes with a sample-size dependent drift. The drift is allowed to be small or large, or simply
equal to zero. This section also compares our limit theory with the limit theory developed by
Wang and Yu (2015) for severely explosive processes. Section 3 extends the results in Section
2 by allowing weakly dependent errors. Section 4 contains simulation evidence. Section 5
provides the empirical testing strategy and documents the empirical application. The last
section concludes. Appendix A presents some technical lemmas that are used in the proofs of
the key results, and Appendix B comprises the proofs of the key results. Proofs of the technical
lemmas and some additional simulation results are relegated to the online supplement.

2 Asymptotic Normal Test Under i.i.d. Errors

2.1 Preliminaries

Following PM (2007a), we consider an ME series {ξt}:

ξt = ρξt−1 + ut,

ρ = ρT = 1 +
1

kT
, (1)

for t = 1, 2, . . . , T, where {ut} is a sequence of i.i.d. innovations with Eut = 0 and Eu2t = σ2 <
∞, and kT increases with T but at a slower rate, i.e., kT →∞ but kT /T → 0 as T →∞. Under
the rate condition on kT , we can show that, for any a > 0, ρaTT grows at an exponential rate
in T/kT , which is faster than any polynomial rate in T/kT ; see Lemma A.1 in Appendix A. In
(1), we have implicitly set c to be 1. From an empirical point of view, we can do so without
loss of generality, as the effect of having a parameter c can be captured by reparametrizing kT .

1There will be some size distortion from pretesting. In principle, a Bonferroni correction can be used to
alleviate the problem.
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That is, when c is a positive constant, we can let ρT = 1 + c/kT = 1 + 1/(kT /c) = 1 + 1/k̃T for
some k̃T . When T is large enough, k̃T will meet the requirements kT →∞ and kT /T → 0.

We further assume that the initial value of the ME process, ξ0, satisfies ξ0 = op(
√
kT )

and that ξ0 is independent of {ut, t = 1, . . . , T}. The triangular parametrization of ρT and the
assumption on ξ0 ensure that an invariance principle can be established for the ME process.
If ρ is a fixed value greater than 1, the effects of a nonzero initial value would not disappear,
even asymptotically. In this case, as shown in Anderson (1959), an invariance principle is not
applicable.

Define

XT := (kT )−1/2
T∑
t=1

ρ
−(T−t)−1
T ut and YT := (kT )−1/2

T∑
j=1

ρ−jT uj . (2)

Let X and Y be independent random variables, each distributed as N(0, σ2/2). PM (2007a)
show that

(XT , YT )′ ⇒ (X,Y )′ , (3)

where “⇒” signifies the weak convergence. Moreover, they show that

(
kTρ

T
T

)−2 T∑
t=1

ξ2t−1 = Y 2
T /2 + op (1) , (4)

(
kTρ

T
T

)−1 T∑
t=1

ξt−1ut = XTYT + op (1) , (5)

and
kTρ

T
T

2

(
ρ̂T,ξ − ρT

)
⇒ X/Y, (6)

where ρ̂T,ξ is the OLS estimator of ρT and X/Y follows the standard Cauchy distribution. See
PM (2007a, page 122) for more details.

Let

σ̂2ρ,ξ = s2T,ξ

(
n∑
t=1

ξ2t−1

)−1
and s2T,ξ =

1

T − 1

T∑
t=1

(
ξt − ρ̂T,ξξt−1

)2
.

Taking σ̂ρ,ξ as an estimator of the standard error of (ρ̂T,ξ−ρT ), we construct the OLS t statistic
as follows

tPM :=
ρ̂T,ξ − ρT
σ̂ρ,ξ

. (7)

Using (3)–(6), we can show that

tPM ⇒
2X/Y

σ/(Y/
√

2)
=

X

σ/
√

2
=d N (0, 1) .

The symbol “=d” signifies the equivalence in distribution.

2.2 Model and Test for ME Processes with Drift

We consider an ME process with drift (MED) defined by

yt = µT + ρyt−1 + ut,

ρ = ρT = 1 +
1

kT
. (8)
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We maintain the following assumption.

Assumption 2.1 (a) ut ∼ i.i.d.(0, σ2); (b) kT = Tα0 for some α0 ∈ (0, 1); (c) µTT
α0/2 →

ν ∈ [0,∞] as T →∞; (d) y0 is independent of {ut, t = 1, . . . , T} and y0 = op(
√
kT ).

Instead of assuming kT = o(T ), which imposes only an upper bound on the rate of divergence
of kT , we assume an exact rate kT = Tα0 for α0 ∈ (0, 1) in Assumption 2.1. That is, we
characterize the explosive rate of the deviation from unity explicitly. In this case, the AR
coefficient becomes ρT = 1 + 1/Tα0 . Given that α0 is assumed to be fixed, we have in effect
employed a somewhat restrictive data generating process. Under our parametrization, α0 is
the only parameter that characterizes the moderate deviation from unity for a random sample
of size T . We will refer to α0 as the explosive index and the ME process with explosive index
α0 as the α0-ME process.

The drift in our model can be both small or large. When µTT
α0/2 → ∞, we say that the

drift is large. When µT is a fixed constant, then µTT
α0/2 →∞, and we have a large drift. On

the other hand, when µTT
α0/2 → ν ∈ [0,∞), we say that the drift is small. In this case, µT

approaches zero at a certain rate with the sample size. Note that ν can be arbitrarily close to
zero or just equal to zero. So our model allows for a small drift or no drift at all. In practice,
we do not know the size of the true drift. To avoid model misspecification, it is advisable to
include a drift in our model specification.

Expanding (8), we obtain

yt = ρtT y0 +
t∑

j=1

ρt−jT uj + µT
(
ρtT − 1

)
/ (ρT − 1)

= ξt + µT
(
ρtT − 1

)
Tα0 , (9)

where

ξt = ρtT ξ0 +
t∑

j=1

ρt−jT uj for ξ0 = y0.

{ξt} satisfies model (1) and is an ME process without drift. So, the stochastic approximations
in (4) and (5) in Section 2.1 hold. When µT 6= 0, the process {yt} has two components: the
stochastic ME component ξt and the deterministic nonlinear trend component µT (ρtT − 1)Tα0 ,
both of which can render the process explosive. In particular, the stochastic ME component
is shown to be a generalized random walk, which can be decomposed into a random walk and
a sample-size dependent remainder. As the sample size goes to infinity, the remainder that
characterizes the explosive deviation from the unit-root fundamental will decay.

Based on (9), we obtain Theorem 2.1 which characterizes the limits of the main sample
statistics of interest.

Theorem 2.1 Let Assumption 2.1 hold with ν ∈ (0,∞]. Define 1/∞ = 0. Then the following
convergence results hold jointly:

(a) µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

y2t−1 ⇒ (1 + Y/ν)2 /2;

(b) µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

yt−1 ⇒ 1 + Y/ν;

(c) µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

yt−1ut ⇒ X +XY/ν.
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When Assumption 2.1(c) holds with ν =∞, the convergence rates of the sample statistics
in Theorem 2.1 are all higher than those obtained for the α0-ME processes without drift. The
faster rates of convergence when the drift satisfies µTT

α0/2 →∞ are due to the accumulation
of the drift term. In large samples, {yt} behaves like a deterministic trending process with
consequential effects on the asymptotic behavior of the sample statistics. This also explains
why µT appears in the normalization factors in Theorem 2.1.

We proceed to investigate the asymptotic distribution of the OLS estimator ρ̂T of ρT . Define

ZT := T−1/2
T∑
t=1

ut. (10)

Using the Lindeberg-Feller central limit theorem, we can show that ZT converges in distribution
to Z, where Z ∼ N(0, σ2). Moreover, the convergence holds jointly with the convergence in
(3) with Z independent of (X,Y ); see Wang and Yu (2015) or the proof of Theorem 3.3 in
Appendix B.

To characterize the rate of convergence of the OLS estimator ρ̂T of ρT , we let

DT =

(
T 1/2 0

0 µTT
3α0/2ρTT

)
.

Then, for xt = ( 1, yt−1 )′, we have

D−1T

(
T∑
t=1

xtx
′
t

)
D−1T =

 1
T

∑T
t=1 1 1

µT
√
TT 3α0/2ρTT

∑T
t=1 yt−1

1
µT
√
TT 3α0/2ρTT

∑T
t=1 yt−1

1
µ2TT

3α0/2ρTT

∑T
t=1 y

2
t−1


=

(
1 Op

(
T (α0−1)/2

)
Op
(
T (α0−1)/2

)
1

µ2TT
3α0ρ2TT

∑T
t=1 y

2
t−1

)
⇒
(

1 0

0 (1 + Y/ν)2 /2

)
,

using Theorem 2.1(a-b). In addition, using Theorem 2.1(c), we have

D−1T

T∑
t=1

xtut ⇒
(
Z, X +XY/ν

)′
.

It then follows that

µTT
3α0/2ρTT (ρ̂T − ρT ) = e′2

[
D−1T

(
T∑
t=1

xtx
′
t

)
D−1T

]−1 [
D−1T

T∑
t=1

xtut

]

⇒ X +XY/ν

(1 + Y/ν)2 /2
=

2X

1 + Y/ν
, (11)

where e2 = ( 0, 1 )′.

When ν = ∞, we have µTT
3α0/2ρTT (ρ̂T − ρT ) ⇒ 2X and so ρ̂T is asymptotically normal.

The rate of convergence of ρ̂T to ρT (i.e., µ−1T T−3α0/2ρ−TT ) is faster than the rate of T−α0ρ−TT
in PM (2007a). When ν ∈ (0,∞), the limit distribution is mixed normal. As in PM (2007a),
it is a ratio of two independent normal random variables, but it is not the standard Cauchy
distribution. Depending on the value of ν, we obtain an asymptotically normal or mixed-normal
distribution.
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We now construct the t statistic as follows:

tMED :=
ρ̂T − ρT
σ̂ρ

,

where

σ̂2ρ = s2T e
′
2

(
T∑
t=1

xtx
′
t

)−1
e2 and s2T = (T − 2)−1

T∑
t=1

(yt − µ̂T − ρ̂T yt−1)
2 .

Then we have

tMED ⇒
2X

(1 + Y/ν)

(
1

σ

(1 + Y/ν)√
2

)
=

X

σ/
√

2
=d N (0, 1) .

The limiting distribution of tMED is the standard Gaussian distribution rather than some
nonstandard distribution that involves functionals of Brownian motions. The main reason is
that, after being normalized by the scaling matrix DT , the off-diagonal elements of D−1T (

∑T
t=1 xtx

′
t)D

−1
T

vanish as T → ∞. A key assumption behind this result is that α0 < 1. In contrast, these ele-
ments converge weakly to a nonzero constant or random variate in the conventional unit-root
or local-to-unity framework.

The α0-ME process can be regarded as an approximation to the unit root process from the
explosive side. When α0 → 1, our parametrization resembles a near unit-root parametrization
but on the explosive side. Note that when α0 = 1, we have limT→∞ ρ

T
T = limT→∞(1+1/T )T = e.

So when α0 → 1 and µT is a constant, the orders of
∑T

t=1 y
2
t−1,

∑T
t=1 yt−1, and

∑T
t=1 yt−1ut

become close to Op(T
3), Op(T

2), and Op(T
3/2), respectively. These convergence rates match

those in the local-to-unity case.
To investigate the asymptotic properties of the t test when ν = 0, we establish the theorem

below, which is a modified version of Theorem 2.1. Given that the proof is essentially the same
as that for Theorem 2.1 with only minor modifications, we omit it here.

Theorem 2.2 Let Assumption 2.1 hold with ν = 0. Then the following convergence results
hold jointly:

(a)
(
T 2α0ρ2TT

)−1 T∑
t=1

y2t−1 ⇒ Y 2/2;

(b)
(
T 3α0/2ρTT

)−1 T∑
t=1

yt−1 ⇒ Y ;

(c)
(
Tα0ρTT

)−1 T∑
t=1

yt−1ut ⇒ XY .

The limiting behaviors of the sample statistics are the same as the case with no drift.
Combining Theorem 2.2 with the argument for the asymptotic normal result for the case
ν > 0, we obtain

1

2
Tα0ρTT (ρ̂T − ρT )⇒ X

Y
and tMED ⇒

X

σ/
√

2
=d N (0, 1) .

We formalize our asymptotic standard normal limit theory in the theorem below.

Theorem 2.3 Let Assumption 2.1 hold. Then tMED ⇒ N(0, 1) as T →∞.
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Regardless of the size of the drift, the t statistic is asymptotically standard normal. This is a
very encouraging and convenient result. We obtain the same limiting distribution even though
the asymptotic distribution of the coefficient estimator is different for different drift sizes. Note
that the t test based on the PM regression (with no intercept included) is asymptotically normal
only in the absence of a drift term. The asymptotic normal t-test based on the PM regression
can have a large size distortion if a drift is actually present. When the nature of the drift is
not known, we recommend employing the tMED test, which is asymptotically valid no matter
whether the drift is small or large.

Wang and Yu (2015, hereafter WY) develop the limit theory for the model

yt = µ+ ρyt−1 + ut, ut ∼ i.i.d.(0, σ2),

where both µ and ρ are fixed and ρ > 1. Compared with a moderate deviation from unity,
a fixed ρ value that is strictly greater than 1 can be viewed as a severely explosive (SE)
parametrization.

The t statistic tWY in WY (2015) is identical to tMED. Let

ẌT :=
T∑
t=1

ρ−(T−t)ut and ŸT := ρ
T−1∑
j=1

ρ−juj + ρy0.

WY (2015) show that (ẌT , ŸT )⇒ (Ẍ, Ÿ ) and that

tWY ⇒ tWY,∞
(
y0, ρ, σ

2, µ
)

:=
Ẍ

Ÿ + ρµ/ (ρ− 1)
·
∣∣∣∣Ÿ +

ρµ

ρ− 1

∣∣∣∣ · (ρ2 − 1

ρ2σ2

)1/2

. (12)

The limiting distribution is nonstandard. It is also not pivotal, as it depends on the unknown
parameters ρ, µ, and σ, and the initial value y0. This feature makes the limiting distribution
less convenient to use in empirical applications.

Plugging y0 = op(T
α0/2) and ρ = 1 +T−α0 into the random variable tWY,∞(y0, ρ, σ

2, µ) and
letting T →∞, we have

tWY,∞
(
y0, ρ, σ

2, µ
)

=
Tα0/2X

Tα0/2Y + µTα0
·
∣∣∣Tα0/2Y + µTα0

∣∣∣ · (2/Tα0

σ2

)1/2

(1 + op (1))

=
X

σ/
√

2
·
∣∣Tα0/2Y + µTα0

∣∣
Tα0/2Y + µTα0

(1 + op (1)) =
X

σ/
√

2
(1 + op (1))⇒ N (0, 1) ,

no matter whether µTα0 dominates Tα0/2Y or Tα0/2Y dominates µTα0 , in probability. There-
fore, the distribution of tWY,∞(y0, ρ, σ

2, µ) will become asymptotically standard normal. This
is a type of informal sequential asymptotics. We first establish the limiting distribution of the
t statistic for a fixed ρ > 1 and a given initial value y0. We then investigate the behavior of
the limiting distribution when ρ approaches 1 from the right-hand side (i.e., ρ = 1 + T−α0)
and when the initial value becomes stochastically manageable (i.e., y0 = op(T

α0/2)). There is a
smooth transition from the limiting distribution in the severely explosive case (i.e., ρ is fixed
and greater than 1) to that in the moderately explosive case (i.e., ρ = 1+T−α0 for α0 ∈ (0, 1)).
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3 Asymptotic t Test Under Weakly Dependent Errors

The previous section has been confined to the case wherein the sequence of errors driving
the model is independent and identically distributed. A natural extension is to develop a test
for MED that does not rely on this strong assumption. Assumption 3.1 below allows the error
process to have a general dependence structure.

Assumption 3.1 (a) ut = C(L)εt with εt ∼ i.i.d.(0, σ2), C(L) =
∑∞

j=0 cjL
j , c0 = 1, and L is

the lag operator; (b) C(1) ∈ (0,∞) and
∑∞

j=0 j · |cj | < ∞; (c) E|εt|l < ∞ for some l ≥ 4; (d)

kT = Tα0 for some α0 ∈ (0, 1); (e) µTT
α0/2 → ν ∈ [0,∞] as T →∞; (f) y0 is independent of

{ut, t = 1, . . . , T} and y0 = op(
√
kT ).

Assumptions 3.1(a)–(c) are the same as those maintained in Phillips and Solo (1992). Under
these assumptions, {ut} is weakly stationary.2 Assumption 3.1(b) ensures that {ut} has a
martingale decomposition:

ut = C (1) εt + ε̃t−1 − ε̃t, (1)

where ε̃t =
∑∞

j=0 c̃jεt−j and c̃j =
∑∞

k=j+1 ck. In addition,
∑∞

j=0 c̃
2
j <∞ and so var(ε̃t) <∞. For

more details, see Phillips and Solo (1992, Theorem 2.5). Using the martingale decomposition,
we have

T−1/2
T∑
t=1

ut ⇒ N
(
0, λ2

)
,

where λ2 is the LRV of ut defined by

λ2 := lim
T→∞

T−1E

(
T∑
t=1

ut

)2

= σ2C(1)2.

The martingale decomposition also facilitates the proof of Lemma 3.1 below.

Lemma 3.1 Let Assumption 3.1 hold. Then
(a)

X̃T := T−α0/2
T∑
t=1

ρ
−(T−t)−1
T ut = C (1)T−α0/2

T∑
t=1

ρ
−(T−t)−1
T εt + op (1) ;

(b)

ỸT := T−α0/2
T∑
t=1

ρ−tT ut = C (1)T−α0/2
T∑
t=1

ρ−tT εt + op (1) ;

(c) (X̃T , ỸT )⇒ (X̃, Ỹ ) where X̃ and Ỹ are independent N(0, λ2/2) random variables.

Lemma 3.1 shows that the effect of temporal dependence on the distribution of (X̃T , ỸT )
is to re-scale the distribution under i.i.d. errors by a constant C(1). Then the asymptotic
distributions of the main sample statistics under ν ∈ (0,∞] and under ν = 0 follow in a direct
way from the approach that we pursue in Section 2. The proof of Theorem 3.1 is given in
Appendix A while the proof of Theorem 3.2 is similar and is therefore omitted.

2We can also make a more general assumption that εt is a martingale difference sequence.
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Theorem 3.1 Let Assumption 3.1 hold with ν ∈ (0,∞]. Define 1/∞ = 0. Then the following
convergence results hold jointly:

(a) µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

y2t−1 ⇒
(

1 + Ỹ /ν
)2
/2;

(b) µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

yt−1 ⇒ 1 + Ỹ /ν;

(c) µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

yt−1ut ⇒ X̃ + X̃Ỹ /ν.

Theorem 3.2 Let Assumption 3.1 hold with ν = 0. Then the following convergence results
hold jointly:

(a)
(
T 2α0ρ2TT

)−1 T∑
t=1

y2t−1 ⇒ Ỹ 2/2;

(b)
(
T 3α0/2ρTT

)−1 T∑
t=1

yt−1 ⇒ Ỹ ;

(c)
(
Tα0ρTT

)−1 T∑
t=1

yt−1ut ⇒ X̃Ỹ .

Note that
∑T

t=1 y
2
t−1,

∑T
t=1 yt−1, and

∑T
t=1 yt−1ut have the same convergence rates as in the

i.i.d. case. When ν ∈ (0,∞], the OLS estimator ρ̂T of ρT satisfies

µTT
3α0/2ρTT (ρ̂T − ρT )⇒ 2X̃

1 + Ỹ /ν
.

When ν = 0, the coefficient estimator satisfies

1

2
Tα0ρTT (ρ̂T − ρT )⇒ X̃

Ỹ
.

These two results are analogous to (11) and (6), respectively.
To make an inference on ρT , we need to estimate the LRV λ2 of {ut}. Let

ût = yt − µ̂T − ρ̂T yt−1

be the estimated residual. The commonly-used estimator of λ2 takes the form

λ̂
2

K =
1

T

T∑
t=1

T∑
s=1

QK(t, s)ûtûs,

where QK(·, ·) is a weighting function that depends on the smoothing parameter K. This
includes the kernel LRV estimator if we let QK(t, s) = κ((t− s)/(TK−1)) for a kernel function

κ(·). In this paper, we take a simple average of the first few periodograms to construct λ̂
2

K .
More specifically, we let K be even and

QK(t, s) =
1

K

K∑
`=1

φ`

(
t

T

)
φ`

( s
T

)
,
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where φ2`(x) =
√

2 sin(2π`x) and φ2`−1(x) =
√

2 cos(2π`x) are the Fourier basis functions.

With the above weighting function, λ̂
2

K takes the average form:

λ̂
2

K =
1

K

K∑
`=1

[
1√
T

T∑
t=1

φ`

(
t

T

)
ût

]2
. (2)

Other basis functions can be used, leading to a new class of orthonormal series LRV estimators.
For theoretical developments of this type of LRV estimators and their advantages, see, e.g.
Phillips (2005), Müller (2007), and Sun (2011, 2013, 2014). For simplicity, we opt for the
Fourier basis functions here.

On the basis of λ̂
2

K in (2), we construct the t statistic as follows:

t̃MED :=
ρ̂T − ρT
σ̃ρ,K

,

where

σ̃2ρ,K = λ̂
2

Ke
′
2

(
T∑
t=1

xtx
′
t

)−1
e2.

The limiting distribution of the t̃MED statistic is given in the theorem below.

Theorem 3.3 Let Assumption 3.1 hold. Under the fixed-K asymptotics where T → ∞ for a
fixed K, the following convergence results hold jointly:

(a) λ̂
2

K/λ
2 ⇒ χ2

K/K where χ2
K is a random variable following the chi-square distribution

with K degrees of freedom;
(b) t̃MED ⇒ tK where tK is the Student’s t distribution with K degrees of freedom.

Theorem 3.3 holds for ν ∈ [0,∞]. The asymptotic theory for the t̃MED statistic is valid
regardless of whether the drift in the true process is small or large, or equal to zero. Theorem

3.3(a) indicates that if K → ∞, then λ̂
2

K will become consistent. This is a type of sequential
asymptotics. More rigorously, under the joint asymptotics under which K →∞ but K/T → 0

as T → ∞, we can establish that λ̂
2

K is consistent for λ2. Theorem 3.3(b) shows that the
HAR t statistic is asymptotically t distributed. As K increases, the t distribution becomes
closer to the standard normal distribution. There is a growing literature showing that the
fixed-K asymptotic approximation for the studentized test statistic is more accurate than the
corresponding increasing-K asymptotic approximation. The reason is that the former captures

the randomness in λ̂
2

K while the latter does not.
To establish the asymptotic t theory in Theorem 3.3(b), we have to show that the esti-

mator error in ρ̂T is asymptotically independent of the LRV estimator λ̂
2

K . The asymptotic
independence is due to the explosive behavior of the underlying time series. It is similar to the
asymptotic independence of (XT , YT ) from ZT , defined in (2) and (10), respectively. We also
have to show that {T−1/2

∑T
t=1 φ`(

t
T )ût} forms an i.i.d. sequence in large samples. The key

driving forces behind this result are the orthonormality of the basis functions {φ`} on L2[0, 1]
and the “zero mean” condition, i.e.,

∫ 1
0 φ`(r)dr = 1.

For the asymptotic t theory to hold, it is necessary to employ the orthonormal series LRV
estimator. Using a kernel LRV estimator will not allow us to develop the convenient t approxi-
mation. Nevertheless, it will enable us to make asymptotically pivotal inferences — the limiting
distribution of the associated t statistic will be a nonstandard mixed-normal distribution that
is nuisance parameter free. It is not very convenient to use a nonstandard distribution, as
critical values have to be simulated.
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4 Monte Carlo Simulation

4.1 Simulation Evidence Under i.i.d. Errors

In this subsection, we conduct MC simulations to evaluate the finite sample performance of
our asymptotic normal test, the tMED test, when the errors are independently and identically
distributed.

The data generating process (DGP) is given by

yt = µT + ρyt−1 + ut, t = 1, 2, . . . , T, (1)

where ρ = 1+T−α0 with the initial value being y0 = µT . The intercept is set to be µT = νT−α0/2

and we take ν = 0, 2, Tα0/4, and Tα0/2. Such setting is compatible with y0 = op(T
α0/2). We

conduct two groups of MC simulations. The first group employs i.i.d. Gaussian errors while the
second group employs i.i.d. uniform errors. That is, ut ∼ i.i.d.N(0, 1) or ut ∼ i.i.d.U(−

√
3,
√

3).
We examine the empirical size of the tMED test. For comparison we also examine the

empirical size of the tPM and tWY tests. The PM test based on the statistic in (7) ignores
the intercept, while the WY test assumes that ρ is fixed and strictly larger than 1. The null
hypothesis of interest is H0 : ρ = 1 + 1/Tα0 for different configurations of α0 and T , where α0

represents the degree of explosiveness for a sample of size T . To save place, we discuss the case
with α0 = 0.5 and T = 100 in the main text. This case is representative of other configurations.
More detailed simulation results are reported and discussed in the online supplement. For the
tPM test and the tMED test, we use critical values from the standard normal distribution. The
tWY test is similar to the tMED test but uses critical values from the asymptotic distribution
shown in (12), which is simulated using true parameter values. To a great extent, we give the
tWY test some edge, as some of the true parameter values are not known under the null. The
nominal level is 5%, and the number of simulation replications is 5,000.

We also examine the empirical power of the three competing tests. The parameter con-
figuration is the same as those for size calculations except the DGP is generated under the
local-to-unity alternative HA : ρ = 1 + 1/T . To avoid the size difference in the power compari-
son, we simulate and compare the size-adjusted power using the empirical finite sample critical
values obtained from the null distribution. Since the tWY and tMED tests are based on the same
test statistic, the size-adjusted power of these two tests is identical. We report the power for
the tMED test only.

Table 1 reports the size and power results of the tPM, tWY, and tMED tests under Gaussian
errors and uniform errors, respectively. The two groups of results are qualitatively similar,
providing further evidence that normality of the errors is not necessary for these tests. First,
as can be seen from the table, both the tWY and tMED tests have quite accurate size in all
drift cases. Note that we employ the true parameter values to simulate the asymptotic distri-
bution of the tWY statistic. In an absolute and overall sense, the standard normal distribution
approximates the distribution of the tMED statistic very well. Second, we observe that when
ν = 0, the size performance of the tMED test is not worse than that of the tPM test, while as
ν departs farther away from zero, the tPM test suffers from large size distortion but the tMED

test still enjoys a good size control. It is encouraging to see that the tMED test dominates the
tPM test in terms of the size accuracy. Finally, both the tPM and tMED tests have satisfactory
power performance. Simulation results in the online supplement show that the tMED test is
more powerful than the tPM test. Given the simulation evidence, we can conclude that the
tMED test succeeds in controlling size without power loss.
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Table 1: Size and power under i.i.d. errors: α0 = 0.5 and T = 100.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tPM tWY tMED tPM tMED

(a) i.i.d. Gaussian errors
ν = 0 0.050 0.053 0.056 1.000 1.000
ν = 2 0.733 0.056 0.055 1.000 1.000

ν = Tα0/4 0.641 0.056 0.055 1.000 1.000

ν = Tα0/2 0.969 0.058 0.055 1.000 1.000
(b) i.i.d. uniform errors

ν = 0 0.049 0.047 0.049 1.000 1.000
ν = 2 0.733 0.047 0.048 1.000 1.000

ν = Tα0/4 0.637 0.047 0.048 1.000 1.000

ν = Tα0/2 0.973 0.047 0.048 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. The model used for the experiment is (1) with ut ∼ i.i.d.N(0, 1) in the i.i.d. Gaussian group and with

ut ∼ i.i.d.U(−
√

3,
√

3) in the i.i.d. uniform group. Different parameter combinations are configured to con-

duct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα0 against the alternative of local-to-unity

ρ = 1 + 1/T .

4.2 Simulation Evidence Under Weakly Dependent Errors

Using the same DGP in (1), we examine the finite sample performance of the t̃MED test under
two different experiment designs in this subsection: the AR design and the moving average
(MA) design. To save space, we only consider the case with ν = Tα0/4, i.e., µT = T−α0/4. In

the AR design, ut follows an AR(1) process ut = θut−1+
√

1− θ2e1,t, where e1,t ∼ i.i.d.N(0, 1).

In the MA design, ut = θe2,t−1 +
√

1− θ2e2,t, where e2,t ∼ i.i.d.N(0, 1). By construction, the
error has a unit variance in both designs. We take θ = 0.00, 0.25, 0.50, and 0.75. The t̃MED

statistic is based on the LRV estimator in (2). Following Phillips (2005), we choose K based
on the asymptotic mean squared error (AMSE) criterion implemented using the AR(1) plug-in
procedure. We round the data-driven value of K to a closest even number between 4 and T.
For both the AR and MA designs, we consider different combinations of α0 and T ; see Table 2
for the case with α0 = 0.5 and T = 100 and the online supplement for more detailed simulation
evidence. For comparison, we also consider the tMED test, which ignores the autocorrelation in
{ut} . The initial value is set to be y0 = µT and the number of simulation replications is 5,000.

Table 2 reports the size and power results of the tMED and t̃MED tests. The table shows
that compared with the tMED test, the t̃MED test achieves a satisfactory size-adjusted power
performance with only relatively small size distortion in both the AR and MA designs. This
result is consistent with our theoretical analysis. Ignoring the autocorrelation leads to an
inaccurate test.
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Table 2: Size and power in the presence of autocorrelated errors: α0 = 0.5 and T = 100.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tMED t̃MED tMED t̃MED

(a) AR design
θ = 0.00 0.053 0.057 1.000 1.000
θ = 0.25 0.134 0.068 1.000 1.000
θ = 0.50 0.242 0.070 1.000 0.998
θ = 0.75 0.413 0.081 0.993 0.971

(b) MA design
θ = 0.00 0.055 0.060 1.000 1.000
θ = 0.25 0.114 0.060 1.000 1.000
θ = 0.50 0.157 0.066 1.000 1.000
θ = 0.75 0.169 0.066 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. The model used for the experiment is (1) with ut = θut−1 +
√

1− θ2e1,t under the AR design and with

ut = θe2,t−1 +
√

1− θ2e2,t under the MA design, where e1,t ∼ i.i.d.N(0, 1) and e2,t ∼ i.i.d.N(0, 1). Different pa-

rameter combinations are configured to conduct simulations for the null of moderate explosiveness ρ = 1+1/Tα0

against the alternative of local-to-unity ρ = 1 + 1/T .

5 Empirical Application

5.1 Background and Data: Explosive Ups of the World Stock Indexes

Before the “Great Recession” of 2007–2009, led by the loose monetary policy and irrational
real estate boom, the U.S. stock market experienced a spectacular rise (Allen, Babus, and
Carletti, 2009; Taylor, 2009; Allen and Carletti, 2010; Stiglitz, 2010). The most impressive
phenomenon is that the Dow Jones Industrial Average (DJI) reached its peak at 14,198.1
points on October 12, 2007, after witnessing continuous gain. Most regard this type of increase
as an explosive process and as the first half of a financial bubble episode (Phillips et al., 2015a).
Shiller (2008) argued that the irrational prosperity was the root cause of the subprime crisis,
which was the crux of the financial crisis. Greenspan (1996) coined the phrase “irrational
exuberance” in his remark on December 5, 1996, to describe the herd phenomenon in the stock
market.

The global stock markets were also affected by such a rise. Different economies experienced
different degrees of boom during the exuberance period, largely owing to their corresponding
global financial participation and dependence on the U.S. economy. China, for instance, held
massive foreign exchange reserves, especially the U.S. treasury bonds, in the pre-2008 period
(Woo, Garnaut, and Song, 2013). Along with the American economic prosperity and appre-
ciation of the dollar, a great deal of capital entered into China’s foreign exchange market,
stimulating the explosive growth of China’s major stock indexes.

Greenspan (2008) argued that not all of the increasingly growing processes should be char-
acterized by irrational exuberance and that the bubble was not so large. We are sympathetic
to this argument. Sometimes it is better to describe a surge series as a mildly explosive pro-
cess instead of a severe explosion. Furthermore, some series may have only a unit root or be
trend-stationary and do not pertain to the so-called “explosive” process.
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Table 3: Description of stock indexes.

Region Country/District Stock index Peak date

Americas U.S. DJI Oct 12, 2007
Brazil IBOVESPA May 30, 2008

Asia-Pacific China CSI300 Oct 19, 2007
Hong Kong HSI Nov 02, 2007
Australia AS51 Nov 02, 2007

Europe France FCHI Jun 01, 2007
Germany GDAXI Jul 13, 2007
Italy ITLMS May 18, 2007

Africa Egypt CASE Apr 24, 2008
Nigeria NGSEINDX Mar 07, 2008

In this study, we examine ten major stock indexes listed in Table 3. These ten indexes
are representatives of the world stock markets in different continents: Americas, Asia-Pacific,
Europe, and Africa. We select the most representative stock index for each country/district
and collect weekly observations. The data are taken from the Wind Economic Database. We
choose each stock index’s highest point in the pre-2008-financial-crisis period as the end point
of the rise, and take 100 periods before this highest point.3 We take the same sample window
width for different stock index time series so that the difference in the moderate explosiveness
depends only on the explosive index α0. The window width T = 100 is roughly in line with
Allen and Carletti (2010)’s argument that Federal Reserve’s low interest rate policy in 2005 is
the most immediate and important reason to cause prices to take off. Other window widths
have also been examined, and the results are available upon request.

Figure 1 plots the ten stock indexes. All of the ten indexes experienced considerable rises,
revealing the co-movement among the major stock markets in the world. On the one hand,
several series display relatively pronounced explosive features, even though there are some
random ups and downs around their explosion paths; see, e.g. DJI, CSI300, HSI, and CASE.
On the other hand, some series, such as AS51 and ITLMS, are more like difference-stationary
processes with stochastic trends or even trend-stationary processes with deterministic linear
trends, rather than explosive processes. It is worth noting that the stock indexes in three
Western European countries — France, Germany, and Italy — have similar growth patterns,
as Figure 1 shows. However, further investigations are required to detect whether they are
explosive processes and, if they are, to identify their degrees of explosiveness.

5.2 Empirical Testing Strategy

Our empirical study starts with a two-step empirical testing strategy. The first step is a
pretest aimed at confirming whether each index is an explosive process. This is necessary, as the
α0-ME process is essentially an explosive process. We propose to use the right-tailed augmented

3The decay counterpart in a bubble is essentially the reverse of the exuberance phase. Here we focus on
investigating the exuberance episode. Letting the highest point be the end point is plausible for studying the
explosive degree, since the highest point represents the termination of the growth phase. If the values before the
highest point are not significantly less than the highest point, we have a good reason to believe that this rise is
not an explosive process.
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Figure 1: Time series plot of different stock indexes.
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Dickey-Fuller (RADF) method and the supremum augmented Dickey-Fuller (SADF) method,
both of which are adopted in Phillips et al. (2011) and are designed to test the null hypothesis
ρ = 1 against the alternative hypothesis ρ > 1. The RADF test is the conventional augmented
Dickey-Fuller (ADF) unit root test but uses the right-tailed critical values. We use the RADF
test in order to target at the explosive alternative. The SADF method employs a sequence
of forward recursive RADF unit root tests, using subsets of the sample data increased by one
observation at each pass until the full observations are used. The limiting distribution of the
SADF statistic under the null ρ = 1 is obtained by Phillips et al. (2011, Section 2), viz.

SADF (r0) = sup
r∈[r0,1]

ADFr

⇒ tSADF,∞ := sup
r∈[r0,1]

[(∫ r

0
W̃ (s) dW (s)

)(∫ r

0
W̃ 2 (s) ds

)−1/2]
, (1)

where r0 is the smallest window size and W (s) and W̃ (s) are the standard Brownian motion
and its demeaned version.

The second step is to perform our asymptotic t test, t̃MED, on the indexes that are regarded
as explosive according to the first step. We invert the t̃MED test and construct a confidence
interval (set) for each explosive index. The confidence interval consists of all the values of
α0 that are not rejected by our asymptotic t test. In practice, we may discretize the interval
α0 ∈ (0, 1) and consider a grid of values, say,{

H0 : ρ = 1 + T−α0 |α0 ∈ {0.01, 0.02, . . . , 0.99}
}
.

We can also consider a more refined grid of α0 if needed. Conceptually, smaller values of α0,
such as α0 ≤ 0.30, correspond to high deviations of the AR roots from the unity and highly
explosive behaviors. Larger values of α0, such as α0 ≥ 0.70, correspond to low deviations of the
AR roots from the unity and mildly explosive behaviors. This informative label will be useful
in conveying the severity of bubbles, if they exist, to policy makers.

5.3 Empirical Results

Table 4 reports the results of the RADF and SADF tests in the first step and the asymptotic
t test for those explosive stock indexes in the second step. In implementing the SADF test,
we follow the empirical rule recommended by Phillips et al. (2015a) to set the user-chosen
parameter, r0 = 0.01 + 1.8/

√
T , and accordingly use the asymptotic critical values given in

the same paper.4 At the 5% significance level, the combination of RADF and SADF tests
indicates that DJI, IBOVESPA, CSI300, HSI, GDAXI, CASE, and NGSEINDX follow the
explosive processes in their respective sampling periods. However, the major stock indexes
of some countries, such as Australia, France, and Italy, could not be described by explosive
processes.

For the seven explosive stock indexes, the results of the asymptotic t test in Table 4 show
that their explosive indices α0 largely fall in the range from 0.70 to 0.99. This indicates that
most stock indexes during the pre-2008 exuberance period are only mildly explosive.5 Take

4In practice, we choose r0 = b(0.01 + 1.8/
√
T )T c/T to ensure that r0T is a positive integer. The right-tailed

critical values for the ADF statistic are available from Phillips et al. (2011, Table 1).
5When we take other window widths, T = 80 and 120 for examples, similar remarks apply and the conclusions

remain unchanged. They are not reported to conserve place.
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Table 4: Testing for moderately explosive behaviors.

Stock index Step 1: Step 2:
Explosive behavior test Moderate explosiveness test
ADF SADF Confidence interval

DJI 0.201 1.506 α0 ∈ [0.78, 0.99]
IBOVESPA 0.078 3.592 α0 ∈ [0.79, 0.99]
CSI300 3.548 5.665 α0 ∈ [0.71, 0.99]
HSI 3.103 8.207 α0 ∈ [0.56, 0.82]
AS51 -0.012 0.557 Non-explosion
FCHI -0.148 0.313 Non-explosion
GDAXI 1.201 2.635 α0 ∈ [0.75, 0.99]
ITLMS -0.227 0.413 Non-explosion
CASE 1.050 1.638 α0 ∈ [0.76, 0.99]
NGSEINDX 0.210 7.544 α0 ∈ [0.83, 0.99]

Critical values
90% -0.440 1.100
95% -0.080 1.370
99% 0.600 1.880

Note: This table reports the results of the RADF and SADF tests and the results of the asymptotic t test,

t̃MED. The lag length for each regression in the RADF and SADF tests is selected by the Akaike information

criterion, with the maximum lag set to 8. The critical values for the RADF and SADF tests are from Phillips

et al. (2011) and Phillips et al. (2015a), respectively. For the asymptotic t test, we report the confidence intervals

for the explosive index.
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Table 5: Testing for unit root.

ADF KPSS
Level First difference

AS51 -0.012 -9.163 3.225
FCHI -0.148 -9.296 3.086
ITLMS -0.227 -4.778 3.002

Critical values
1% (99%) -3.498 -3.498 0.739
5% (95%) -2.891 -2.891 0.463
10% (90%) -2.583 -2.583 0.347

Note: This table reports the results of the ADF and KPSS tests. The lag length for the ADF test is selected by

the Akaike information criterion, with the maximum lag set to 8. The critical values for the ADF (left-tailed)

and KPSS (right-tailed) tests are from MacKinnon (1996) and Kwiatkowski et al. (1992), respectively.

the DJI and CSI300 as examples. The DJI in the 100 booming weeks before October 12,
2007 could be described by an MED process with the AR parameter ρ = 1 + T−α0 for some
α0 ∈ [0.78, 0.99]. This signifies that the U.S. stock market witnessed an explosive process with
a quite slow pace of explosion. For CSI300 — the main stock index in the largest developing
country (China) — we fail to reject the null ρ = 1 + T−α0 with α0 ∈ [0.71, 0.99]. Again, while
the process is explosive, it is only mildly explosive.

Similarly, for IBOVESPA and GDAXI, the confidence intervals of α0 are [0.79, 0.99] and
[0.75, 0.99], respectively. These two stock markets responded closely to the “irrational exuber-
ance” in the US. For CASE and NGSEINDX, two representative indexes in the African stock
market, the degrees of explosiveness are also quite mild. African countries’ thin market capi-
talization and shortage of liquidity led to the volatility and vulnerability of the stock markets
(Allen, Otchere, and Senbet, 2011), making them easily affected by the mild exuberance from
external economies.

The HSI of Hong Kong is relatively special. We fail to reject the null of ρ = 1 + T−α0 for
α0 ∈ [0.56, 0.82]. Thus, the Hong Kong market appeared to be more explosive. This could be
due to the smaller scale of the market, which made an explosive outburst relatively easier.

Finally, the three series, AS51, FCHI, and ITLMS, are neither explosive processes nor
MED processes. When the unit root null against the explosive root alternative is not rejected
by either the RADF or SADF method, we can use the conventional unit root tests to examine
these three indexes further. In this paper, we employ the ADF test and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test, the critical values of which are obtained from MacKinnon (1996)
and Kwiatkowski, Phillips, Schmidt, and Shin (1992), respectively. Table 5 reports the unit
root test results. According to the ADF results, all three time series have a unit root at the 5%
level, but their differences have no unit root and appear to be stationary. The KPSS results
also provide significant evidence that the three time series are difference-stationary instead of
being trend-stationary. Thus, we may conclude that the AS51, FCHI, and ITLMS are all I(1)
processes during their respective sampling periods. These quantitative testing results lend some
supplementary support to the conclusion that the rises in Australia, France, and Italy’s stock
markets were not explosive.

To sum up, we find evidence that seven of the ten major stock indexes under our consid-
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eration are moderately explosive, while the remaining ones are nonexplosive and difference-
stationary processes. However, for the former group of indexes, the degree of explosiveness is
quite mild. This finding is consistent with the remark of Jagannathan, Kapoor, and Schaum-
burg (2013): the 2008 financial crisis was more like a symptom than the disease. Despite the
severity and ample effects (Martin and Ventura, 2012; Miao and Wang, 2015; Kunieda and
Shibata, 2016), this financial crisis was similar to past crises (Allen and Carletti, 2010) that
did not show an extremely serious irrational explosion.

6 Conclusion

This paper considers a moderately explosive process with a drift wherein the AR root is
greater than one by a margin diminishing with the sample size. New asymptotic approximations
are established to test for the degree of the moderate explosiveness. We show that the usual t
statistic under i.i.d. errors follows the standard normal distribution in large samples no matter
whether the dominating component of the true data process is the stochastic ME trend or the
deterministic drift trend. We extend this result to allow for some dynamics in the error process
and show that the HAR t statistic is asymptotically t distributed. Monte Carlo experiments
lend some support to our asymptotic results.

The paper also proposes a two-step empirical testing strategy that involves first identifying
whether a time series is explosive or not and then employing our asymptotic t test to measure
the degree of moderate explosiveness if it is indeed explosive. We apply our empirical strategy
to ten major stock indexes in the world during the pre-2008 financial exuberance period. The
results show that seven of these indexes follow the MED processes with AR root slightly larger
than unity; i.e., the explosive index α0 largely falls in the range from 0.70 to 0.99. In addition,
the other three stock indexes are nonexplosive and difference-stationary processes. These results
conform with Greenspan (2008)’s perception and imply that the stock market boom before the
2008 financial crisis is not as explosive as in the existing literature.
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Appendix

Appendix A states some technical lemmas that are used in the proofs of the key results
in Sections 2 and 3. The proofs of these lemmas are available from the online supplement.
Appendix B presents the proofs of the key results of the paper.

Appendix A. Technical Lemmas

Lemma A.1 Let ρT = 1 + c/kT for some c > 0 and kT satisfy 1/kT + kT /T = o (1) . Then
ρ−aTT = o

(
kbT /T

b
)

for any a and b ∈ R+. In addition, if kT = 1/Tα0 for some α0 ∈ (0, 1) , then

ρ−aTT = o
(
1/T b

)
for any a and b ∈ R+.

Lemma A.2 Let Assumption 2.1 hold. Then

(a)
(
T 3α0/2ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT uj = op (1) ;

(b)
(
T 3α0/2ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj = op (1) .

Lemma A.3 Let Assumption 2.1 hold. Then

(
T 3α0/2ρTT

)−1 T∑
t=1

ξt−1 = YT + op (1) .

Lemma A.4 Let Assumption 3.1 hold. Then

(a)
(
Tα0ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT ujut = op (1) ;

(b)
(
T 3α0/2ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT uj = op (1) ;

(c)
(
T 3α0/2ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj = op (1).

Lemma A.5 Let Assumption 3.1 hold. Then

(a)
(
Tα0ρTT

)−1 T∑
t=1

ξt−1ut = X̃T ỸT + op (1) ;

(b)
(
Tα0ρTT

)−2 T∑
t=1

ξ2t−1 = Ỹ 2
T /2 + op (1) ;

(c)
(
T 3α0/2ρTT

)−1 T∑
t=1

ξt−1 = ỸT + op (1) .
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Lemma A.6 Let Assumption 3.1 hold. Then

(a)
T∑
t=1

φ`

(
t

T

)
ρtT = O

(
Tα0ρTT

)
;

(b)
T∑
t=1

φ`

(
t

T

) T∑
j=t

ρt−1−jT uj = op(
√
TTα0ρTT ).

Appendix B: Proofs of the Key Results

Proof of Theorem 2.1: Part (a). Using (9), we obtain

µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

y2t−1 = µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

(
ξt−1 + µTT

α0ρt−1T − µTTα0
)2

= µ−2T
(
T 3α0ρ2TT

)−1( T∑
t=1

ξ2t−1 + µ2TT
2α0

T∑
t=1

ρ2t−2T + 2µTT
α0

T∑
t=1

ξt−1ρ
t−1
T

+Tµ2TT
2α0 − 2µTT

α0

T∑
t=1

ξt−1 − 2µ2TT
2α0

T∑
t=1

ρt−1T

)

= µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

ξ2t−1 +
(
Tα0ρ2TT

)−1 ρ2TT − 1

ρ2T − 1
+

2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

ξt−1ρ
t−1
T

− 2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

ξt−1 +O
(
T (1−α0)ρ−2TT + ρ−TT

)
=

Y 2
T

2µ2TT
α0

+
1

2
+

2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

ξt−1ρ
t−1
T + op (1) ,

by (4) and Lemmas A.1 and A.3.
Since Tα0

(
ρ2T − 1

)
→ 2 as T →∞, we have

2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

ξt−1ρ
t−1
T =

2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

ρt−1T ξ0 +

t−1∑
j=1

ρt−1−jT uj

 ρt−1T

=
2

µT
ξ0
(
T 2α0ρ2TT

)−1 T∑
t=1

ρ2t−2T +
2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

t−1∑
j=1

ρ
2(t−1)−j
T uj

=
2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

T∑
j=1

ρ
2(t−1)−j
T uj −

2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj + op

(
µ−1T T−α0/2

)

=
2

µT

(
T 2α0ρ2TT

)−1 T∑
t=1

ρ
2(t−1)
T

T∑
j=1

ρ−jT uj + op

(
µ−1T T−α0/2

)
=

2

µT

(
T 2α0ρ2TT

)−1 ρ2TT − 1

ρ2T − 1
Tα0/2YT + op (1) =

YT

µTT
α0/2

+ op (1) ,

by ξ0 = op
(
Tα0/2

)
and Lemma A.2(b). The key assumption behind this result is that
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µTT
α0/2 → ν > 0. Thus,

µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

y2t−1 ⇒
1

2
+
Y 2

2ν2
+
Y

ν
=

1

2

(
1 +

Y

ν

)2

.

Part (b). The normalized sample mean is

µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

yt−1 = µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

(
ξt−1 + µTT

α0ρt−1T − µTTα0
)

= µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

ξt−1 + 1− T (1−α0)ρ−TT

=
YT

µTT
α0/2

+ 1 + op (1)⇒ 1 +
Y

ν
,

by (3) and Lemmas A.1 and A.3.
Part (c). The normalized sample covariance is

µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

yt−1ut = µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

(
ξt−1 + µTT

α0ρt−1T − µTTα0
)
ut

= µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

ξt−1ut +
(
Tα0/2ρTT

)−1 T∑
t=1

ρt−1T ut −
(
Tα0/2ρTT

)−1 T∑
t=1

ut

=
XTYT
µTT

α0/2
+

1

Tα0/2

T∑
t=1

ρ
−(T−t)−1
T ut +Op

(
T (1−α0)/2ρ−TT

)
+ op (1)⇒ X +

XY

ν
,

by (3), (5), and Lemma A.1.
The joint convergence of (a), (b), and (c) follows from the Cramér-Wold theorem. �

Proof of Lemma 3.1: Parts (a) and (b). We prove (b) first. Using the decomposition in (1),
we have

T−α0/2
T∑
t=1

ρ−tT ut = T−α0/2
T∑
t=1

ρ−tT C (1) εt + T−α0/2
T∑
t=1

ρ−tT (ε̃t−1 − ε̃t)

= C (1)T−α0/2
T∑
t=1

ρ−tT εt + T−α0/2
T∑
t=1

ρ−tT (ε̃t−1 − ε̃t) .

But

T∑
t=1

ρ−tT (ε̃t−1 − ε̃t) =
T∑
t=1

ρ−tT ε̃t−1 −
T∑
t=1

ρ−tT ε̃t =
T−1∑
t=0

ρ
−(t+1)
T ε̃t −

T∑
t=1

ρ−tT ε̃t

= ρ−1T ε̃0 − ρ−TT ε̃T +

T−1∑
t=1

(
ρ
−(t+1)
T − ρ−tT

)
ε̃t

= ρ−1T ε̃0 − ρ−TT ε̃T − T−α0

T−1∑
t=1

ρ
−(t+1)
T ε̃t.
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Since var(ε̃t) <∞, we have

T−α0/2ρ−1T ε̃0 = op (1) and T−α0/2ρ−TT ε̃T = op (1) .

Now, using the Cauchy inequality, we obtain

var

(
T−1∑
t=1

ρ
−(t+1)
T ε̃t

)
=

(
T−1∑
t=1

ρ
−2(t+1)
T

)
var(ε̃t) + 2

T−1∑
t<s

ρ
−(t+s+2)
T cov (ε̃t, ε̃s)

=

(
T−1∑
t=1

ρ
−2(t+1)
T

)
var(ε̃t) +

2

T−1∑
t<s

∞∑
j=0

c̃j c̃(s−t)+jρ
−(t+s+2)
T

 var(εt)

= O

(
ρ−4T − ρ

−2(T+1)
T

1− ρ−2T

)
+O

T−1∑
t<s

 ∞∑
j=0

c̃2j

 ρ
−(t+s+2)
T


= O (Tα0) +O

(T−1∑
t=1

ρ
−(t+1)
T

)2
 = O (Tα0) +O

((
1

ρTT
− 1

ρT

)2

(ρT − 1)−2
)

= O
(
T 2α0

)
.

Therefore

T−α0/2

(
T−α0

T−1∑
t=1

ρ
−(t+1)
T ε̃t

)
= Op

(
T−α0/2

)
= op (1) .

Combining the above results yields

ỸT = T−α0/2
T∑
t=1

ρ−tT ut = C (1)T−α0/2
T∑
t=1

ρ−tT εt + op (1) .

To prove part (a), we use the same arguments, starting with

T−α0/2
T∑
t=1

ρ
−(T−t)−1
T ut = C (1)T−α0/2

T∑
t=1

ρ
−(T−t)−1
T εt + T−α0/2

T∑
t=1

ρ
−(T−t)−1
T (ε̃t−1 − ε̃t) .

But

T∑
t=1

ρ
−(T−t)−1
T (ε̃t−1 − ε̃t) = ρ−TT ε̃0 − ρ−1T ε̃T + (ρT − 1)

T−1∑
t=1

ρ
−(T−t)−1
T ε̃t

= T−α0

T−1∑
t=1

ρ
−(T−t)−1
T ε̃t +Op (1) .
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By similar calculations, we have

var

(
T−1∑
t=1

ρ
−(T−t)−1
T ε̃t

)

=

(
T−1∑
t=1

ρ
−2(T−t+1)
T

)
var(ε̃t) + 2

T−1∑
t<s

ρ
−(T−t)−1
T ρ

−(T−s)−1
T cov (ε̃t, ε̃s)

=

(
T−1∑
t=1

ρ
−2(t+1)
T

)
var(ε̃t) +

2

T−1∑
t<s

∞∑
j=0

c̃j c̃(s−t)+jρ
−(T−t)−1
T ρ

−(T−s)−1
T

 var(εt)

= O (Tα0) +O

T−1∑
t<s

 ∞∑
j=0

c̃2j

 ρ
−(T−t)−1
T ρ

−(T−s)−1
T


= O (Tα0) +O

(T−1∑
t=1

ρ
−(T−t+1)
T

)2
 = O

(
T 2α0

)
.

Therefore

T−α0/2

(
T−α0

T−1∑
t=1

ρ
−(T−t)−1
T ε̃t

)
= Op

(
T−α0/2

)
= op (1) .

Combining the above results yields

X̃T = T−α0/2
T∑
t=1

ρ
−(T−t)−1
T ut = C (1)T−α0/2

T∑
t=1

ρ
−(T−t+1)
T εt + op (1) .

Part (c). This follows immediately from Parts (a) and (b) and equation (3).�

Proof of Theorem 3.1: The proof is similar to that of Theorem 2.1, but we employ Lemmas
A.4(c) and A.5 which accommodate weak dependence in {ut} . For completeness, we sketch the
proof here.

Part (a). Using (9), we obtain

µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

y2t−1 = µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

(
ξt−1 + µTT

α0ρt−1T − µTTα0
)2

=
(
T 3α0ρ2TT

)−1(
µ−2T

T∑
t=1

ξ2t−1 − 2µ−1T Tα0

T∑
t=1

ξt−1 + 2µ−1T Tα0

T∑
t=1

ξt−1ρ
t−1
T + T 2α0

T∑
t=1

ρ2t−2T

)
+ o (1)

=
(
T 3α0ρ2TT

)−1(
µ−2T

T∑
t=1

ξ2t−1 − 2µ−1T Tα0

T∑
t=1

ξt−1 + 2µ−1T Tα0

T∑
t=1

ξt−1ρ
t−1
T

)
+

1

2
+ o (1) .

It follows from Lemmas A.5(b&c) that

(
T 3α0ρ2TT

)−1
µ−2T

T∑
t=1

ξ2t−1 =
Ỹ 2
T

2µ2TT
α0

+ op (1) ,

and (
T 3α0ρ2TT

)−1(
2µ−1T Tα0

T∑
t=1

ξt−1

)
= Op

(
ỸT

µTT
α0/2ρTT

)
= op (1) .
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Moreover, using ξ0 = op
(
Tα0/2

)
and Lemma A.4(c), we obtain

(
T 3α0ρ2TT

)−1(
2µ−1T Tα0

T∑
t=1

ξt−1ρ
t−1
T

)
= 2µ−1T

(
T 2α0ρ2TT

)−1 T∑
t=1

ρt−1T ξ0 +

t−1∑
j=1

ρt−1−jT uj

 ρt−1T

= 2ξ0µ
−1
T

(
T 2α0ρ2TT

)−1 T∑
t=1

ρ2t−2T + 2µ−1T
(
T 2α0ρ2TT

)−1 T∑
t=1

t−1∑
j=1

ρ
2(t−1)−j
T uj

= 2µ−1T
(
T 2α0ρ2TT

)−1 T∑
t=1

T∑
j=1

ρ
2(t−1)−j
T uj − 2µ−1T

(
T 2α0ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj + op

(
µ−1T T−α0/2

)

= 2µ−1T
(
T 2α0ρ2TT

)−1 T∑
t=1

ρ
2(t−1)
T

T∑
j=1

ρ−jT uj + op

(
µ−1T T−α0/2

)
= 2µ−1T

(
T 2α0ρ2TT

)−1 ρ2TT − 1

ρ2T − 1
Tα0/2ỸT + op (1) =

ỸT
µTT

α0/2
+ op (1) ,

when ν ∈ (0,∞].
Combining the above results and Lemma 3.1(c) leads to

µ−2T
(
T 3α0ρ2TT

)−1 T∑
t=1

y2t−1 ⇒
1

2
+
Ỹ 2

2ν2
+
Ỹ

ν
=

1

2

(
1 +

Ỹ

ν

)2

.

Part (b). By Lemmas 3.1(c), A.1, and A.5(c), we have

µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

yt−1 = µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

(
ξt−1 + µTT

α0ρt−1T − µTTα0
)

= µ−1T
(
T 2α0ρTT

)−1 T∑
t=1

ξt−1 + 1− T (1−α0)ρ−TT

=
ỸT

µTT
α0/2

+ 1 + op (1)⇒ 1 +
Ỹ

ν
.

Part (c). It follows from Lemmas 3.1(c), A.1, and A.5(a) that

µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

yt−1ut = µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

(
ξt−1 + µTT

α0ρt−1T − µTTα0
)
ut

= µ−1T

(
T 3α0/2ρTT

)−1 T∑
t=1

ξt−1ut +
(
Tα0/2ρTT

)−1 T∑
t=1

ρt−1T ut +Op

((
Tα0/2ρTT

)−1
T 1/2

)
=

X̃T ỸT

µTT
α0/2

+ X̃T + op (1)⇒ X̃ +
X̃Ỹ

ν
.

The joint convergence of the results in the theorem follows from the Cramér-Wold theorem.
�

Proof of Theorem 3.3: We prove the case with ν ∈ (0,∞] only. The proof for the case with
ν = 0 is essentially the same with only minor modifications. Detailed calculations for the latter
case are available upon request.
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Part (a). Note that

ût = yt − µ̂T − ρ̂T yt−1 = ut −
(

1, yt−1
)( T∑

t=1

xtx
′
t

)−1 T∑
t=1

xtut.

So

1√
T

T∑
t=1

φ`

(
t

T

)
ût

=
1√
T

T∑
t=1

φ`

(
t

T

)
ut −

1√
T

T∑
t=1

φ`

(
t

T

)(
1, yt−1

)( T∑
t=1

xtx
′
t

)−1 T∑
t=1

xtut

=
1√
T

T∑
t=1

φ`

(
t

T

)
ut

−

[
1√
T

T∑
t=1

φ`

(
t

T

)(
1, yt−1

)
D−1T

][
D−1T

(
T∑
t=1

xtx
′
t

)
D−1T

]−1
D−1T

T∑
t=1

xtut,

where

1√
T

T∑
t=1

φ`

(
t

T

)(
1, yt−1

)
D−1T =

(
1

T

T∑
t=1

φ`

(
t

T

)
,

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
yt−1

)

=

(
o (1) ,

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
yt−1

)
.

For the second element in the above vector, using Lemma A.6(a), we have

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
yt−1

=
1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)[
ξt−1 + µT

(
ρt−1T − 1

)
Tα0

]
=

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
ξt−1 +

1√
TTα0/2ρTT

T∑
t=1

φ`

(
t

T

)(
ρt−1T − 1

)
=

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
ξt−1 + o (1) .
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By Lemmas 3.1(b&c) and A.6, we have, for ν > 0,

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
ξt−1 =

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

) t−1∑
j=1

ρt−1−jT uj + ρt−1T ξ0


=

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

) t−1∑
j=1

ρt−1−jT uj +

[
1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
ρt−1T

]
op

(
Tα0/2

)

=
1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

) t−1∑
j=1

ρt−1−jT uj + op

(
1

µTT
α0/2T (1−α0)/2

)

=
1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

) T∑
j=1

ρt−1−jT uj −
1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

) T∑
j=t

ρt−1−jT uj + op (1)

=
1

µT
√
TTα0ρTT

[
T∑
t=1

φ`

(
t

T

)
ρt−1T

]
ỸT + op

(
µ−1T T−α0/2

)
+ op (1)

= Op

(
1

µTT
α0/2T (1−α0)/2

)
+ op (1) = op (1) .

Therefore

1

µT
√
TT 3α0/2ρTT

T∑
t=1

φ`

(
t

T

)
yt−1 = op (1) ,

and

1√
T

T∑
t=1

φ`

(
t

T

)
ût =

1√
T

T∑
t=1

φ`

(
t

T

)
ut + op (1) = C(1)

1√
T

T∑
t=1

φ`

(
t

T

)
εt + op (1) .

Now under Assumption 3.1,

1√
T

[Tr]∑
j=1

ut ⇒ λW (r) .

Since φ` (·) is continuously differentiable, using summation by parts and the continuous mapping
theorem, we have

1√
T

T∑
t=1

φ`

(
t

T

)
ût ⇒ λη` for η` =

∫ 1

0
φ` (r) dW (r), (A.1)

jointly over ` = 1, . . . ,K. Since φ` (·) are orthonormal bases, we have η` ∼ i.i.d.N(0, 1). It then
follows that

λ̂
2

K/λ
2 ⇒ 1

K

K∑
`=1

η2` =
1

K
χ2
K .
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Part (b). Note that

µTT
3α0/2ρTT (ρ̂T − ρT )

=

(
1

µ2TT
3α0ρ2TT

T∑
t=1

y2t−1

)−1
1

µTT
3α0/2ρTT

T∑
t=1

yt−1ut + op (1)

=
X̃T + X̃T ỸT /ν(
1 + ỸT /ν

)2
/2

+ op (1) =
2X̃T

1 + ỸT /ν
+ op (1)⇒ 2X̃

1 + Ỹ /ν
.

It is easy to show that the above convergence holds jointly with (A.1) for ` = 1, . . . ,K.Moreover,
using Lemma A.6(a), we have∣∣∣∣∣cov

(
T−α0/2

T∑
t=1

ρ
−(T−t)−1
T εt,

1√
T

T∑
t=1

φ`

(
t

T

)
εt

)∣∣∣∣∣
=

∣∣∣∣∣ σ2√
T 1+α0

T∑
t=1

φ`

(
t

T

)
ρ
−(T−t)−1
T

∣∣∣∣∣ =

∣∣∣∣∣ σ2√
T 1+α0ρT+1

T

T∑
t=1

φ`

(
t

T

)
ρtT

∣∣∣∣∣
= O

(
1√

T 1+α0ρT+1
T

Tα0ρTT

)
= o (1) .

This implies that X̃ is independent of {η1, . . . , ηK} .
Let η0 =

√
2X̃/λ, then η0 ∼ N(0, 1), and η0 is independent of {η1, . . . , ηK} . Now

ρ̂T − ρT
σ̃ρ,K

=
µTT

3α0/2ρTT (ρ̂T − ρT )√
λ̂
2

T

√
e′2

[
D−1T

(∑T
t=1 xtx′t

)
D−1T

]−1
e2

⇒
2X̃

1+Ỹ /ν√∑K
`=1 η

2
`

K λ2

1 + Ỹ /ν√
2

=
η0√∑K
`=1 η

2
`

K

=d tK ,

as desired. �
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Online Supplement to “Testing for Moderate Explosiveness”

This supplement presents (i) proofs of the technical lemmas given in Appendix A and (ii)
additional Monte Carlo simulation evidence.

Supplement A: Proofs of the Technical Lemmas in Appendix A

Proof of Lemma A.1: For the first part of the lemma, we use limT→∞ ln (1 + 1/T )T = e
to obtain

ρTT =

(
1 +

c

kT

)T
=

(1 +
c

kT

) kT
c

 cT
kT

→ e
cT
kT , as T →∞.

Therefore,

ρ−aTT

(kT /T )b
= O

(
(T/kT )b

eac(T/kT )

)
= o (1) ,

as desired. The second part of the lemma can be proved in the same way.�

Proof of Lemma A.2: Part (a). Using summation by parts, we have

(
T 3α0/2ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT uj =
(
T 3α0/2ρTT

)−1 T∑
j=1

(
j∑
t=1

ρt−1−jT

)
uj

=
(
T 3α0/2ρTT

)−1 T∑
j=1

1− ρjT
ρjT (1− ρT )

uj = T−α0/2ρ−TT

T∑
j=1

ρjT − 1

ρjT
uj . (S.1)

Now

E

T−α0/2ρ−TT

T∑
j=1

ρjT − 1

ρjT
uj

2

= σ2T−α0ρ−2TT

T∑
j=1

(
1− ρ−jT

)2
≤ σ2T−α0ρ−2TT

T∑
j=1

2
(

1 + ρ−2jT

)
= O

(
T 1−α0ρ−2TT

)
= o (1) ,

by Lemma A.1. Therefore,
(
T 3α0/2ρTT

)−1∑T
t=1

∑T
j=t ρ

t−1−j
T uj converges in mean-square to 0,

and we obtain
(
T 3α0/2ρTT

)−1∑T
t=1

∑T
j=t ρ

t−1−j
T uj = op (1) .

Part (b). We write

(
T 3α0/2ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj =

(
T 3α0/2ρ2TT

)−1 T∑
j=1

(
j∑
t=1

ρ
2(t−1)−j
T

)
uj

=
(
T 3α0/2ρ2TT

)−1 T∑
j=1

(
ρ2jT − 1

ρjT
(
ρ2T − 1

))uj = O (1)T−α0/2ρ−2TT

T∑
j=1

(
ρ2jT − 1

ρjT

)
uj . (S.2)
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Now, using Lemma A.1, we have

E

T−α0/2ρ−2TT

T∑
j=1

(
ρ2jT − 1

ρjT

)
uj

2

= σ2T−α0ρ−4TT

T∑
j=1

(
ρjT − ρ

−j
T

)2
≤ 2σ2T−α0ρ−4TT

T∑
j=1

(
ρ2jT + ρ−2jT

)
= O

(
T−α0ρ−4TT

) (
Tα0ρ2TT + Tα0

)
= o (1) .

Therefore,
(
T 3α0/2ρ2TT

)−1∑T
t=1

∑T
j=t ρ

2(t−1)−j
T uj → 0 in mean-square, which implies that

(
T 3α0/2ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj = op (1) ,

as desired.�

Proof of Lemma A.3: We have

(
T 3α0/2ρTT

)−1 T∑
t=1

ξt−1 =
(
T 3α0/2ρTT

)−1 T∑
t=1

ρt−1T ξ0 +

t−1∑
j=1

ρt−1−jT uj


= ξ0

(
T 3α0/2ρTT

)−1 T∑
t=1

ρt−1T +
(
T 3α0/2ρTT

)−1 T∑
t=1

t−1∑
j=1

ρt−1−jT uj

=
(
T 3α0/2ρTT

)−1 T∑
t=1

ρt−1T

T∑
j=1

ρ−jT uj −
(
T 3α0/2ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT uj + op (1)

=
(
T 3α0/2ρTT

)−1 T∑
t=1

ρt−1T

T∑
j=1

ρ−jT uj + op (1) , (S.3)

by ξ0 = op
(
Tα0/2

)
and Lemma A.2(a). Now

(
T 3α0/2ρTT

)−1 T∑
t=1

ρt−1T

T∑
j=1

ρ−jT uj = T−α0ρ−TT

(
T∑
t=1

ρt−1T

)
YT

= T−α0ρ−TT

(
ρTT − 1

ρT − 1

)
YT =

(
1− ρ−TT

)
YT = YT + op (1) .

Combining the above two results completes the proof of the lemma.�
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Proof of Lemma A.4: Part (a). Note that

E

∣∣∣∣∣∣(Tα0ρTT
)−1 T∑

t=1

T∑
j=t

ρt−1−jT ujut

∣∣∣∣∣∣
≤

(
Tα0ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT E |ujut| ≤
(
Tα0ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT

(
Eu2j

)1/2 (
Eu2t

)1/2
= var(u)

1

ρT − 1

(
Tα0ρTT

)−1 T∑
t=1

(
1− ρt−T−1T

)
= var(u)ρ−TT

T∑
t=1

(
1− ρt−T−1T

)
= var(u)

[
Tρ−TT − ρ−TT

T∑
t=1

ρt−T−1T

]
= var(u)

[
Tρ−TT − ρ−2TT

ρTT − 1

ρT − 1

]
= o (1) ,

by Lemma A.1. Part (a) follows, as convergence in L1 implies convergence in probability.
Part (b). Under Assumption 3.1, (S.1) still holds and so

(
T 3α0/2ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT uj = T−α0/2ρ−TT

T∑
j=1

ρjT − 1

ρjT
uj

= T−α0/2ρ−TT

T∑
j=1

uj + T−α0/2ρ−TT

T∑
j=1

ρ−jT uj

= T (1−α0)/2ρ−TT
1√
T

T∑
j=1

uj + ρ−TT ỸT = op (1) ,

by Lemmas 3.1(b&c) and A.1.
Part (c). Using (S.2), we have

(
T 3α0/2ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj = O(1)×

T−α0/2ρ−2TT

T∑
j=1

(
ρjT − ρ

−j
T

)
uj


= O (1)T−α0/2ρ−T+1

T

T∑
j=1

ρ
−(T−j)−1
T uj +O (1)T−α0/2ρ−2TT

T∑
j=1

ρ−jT uj

= O (1) ρ−T+1
T X̃T +O (1) ρ−2TT ỸT = op (1) ,

by Lemma 3.1.�
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Proof of Lemma A.5: Part (a). We have

(
Tα0ρTT

)−1 T∑
t=1

ξt−1ut =
(
Tα0ρTT

)−1 T∑
t=1

ρt−1T ξ0 +
t−1∑
j=1

ρt−1−jT uj

ut

=
ξ0

Tα0/2

(
T−α0/2

T∑
t=1

ρ
−(T−t)−1
T ut

)
+
(
Tα0ρTT

)−1 T∑
t=1

t−1∑
j=1

ρt−1−jT ujut

=
(
Tα0ρTT

)−1 T∑
t=1

T∑
j=1

ρt−1−jT ujut −
(
Tα0ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−jT ujut + op (1)

=
(
Tα0ρTT

)−1 T∑
t=1

T∑
j=1

ρt−1−jT ujut + op (1)

=

(
T−α0/2

T∑
t=1

ρ
−(T−t)−1
T ut

)T−α0/2
T∑
j=1

ρ−jT uj

+ op (1) = X̃T ỸT + op (1) ,

using ξ0 = op
(
Tα0/2

)
and Lemmas 3.1 and A.4(a).

Part (b). By squaring ξt = ρT ξt−1 + ut, we have

ξ2t − ξ2t−1 =
(
ρ2T − 1

)
ξ2t−1 + 2ρT ξt−1ut + u2t ,

that is, (
ρ2T − 1

)
ξ2t−1 = ξ2t − ξ2t−1 − 2ρT ξt−1ut − u2t .

So (
ρ2T − 1

) T∑
t=1

ξ2t−1 = ξ2T − ξ20 − 2ρT

T∑
t=1

ξt−1ut −
T∑
t=1

u2t .

Using Part (a), we now have

(
Tα0ρTT

)−2 T∑
t=1

ξ2t−1 =
1

T 2α0ρ2TT
(
ρ2T − 1

)ξ2T + op (1)

=
1

T 2α0ρ2TT
(
ρ2T − 1

)
ρTT ξ0 +

T∑
j=1

ρT−jT uj

2

+ op (1)

=
1

Tα0
(
ρ2T − 1

)
T−α0/2

T∑
j=1

ρ−jT uj

2

+ op (1) =
Ỹ 2
T

2
+ op (1) .

Part (c). The proof is similar to that of Lemma A.3. According to Lemma A.4(b), the
equation (S.3) still holds under Assumption 3.1. So

(
T 3α0/2ρTT

)−1 T∑
t=1

ξt−1 = T−α0ρ−TT

(
T∑
t=1

ρt−1T

)
ỸT = ỸT + op (1) .

�
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Proof of Lemma A.6: Part (a). Since φ` (·) is bounded, we have∣∣∣∣∣ 1

Tα0ρTT

T∑
t=1

φ`

(
t

T

)
ρtT

∣∣∣∣∣ = O

(
1

Tα0ρTT

T∑
t=1

ρtT

)
= O

(
1

Tα0ρTT

(
Tα0ρTT

))
= O (1) ,

where we have used
∑T

t=1 ρ
t
T = O

(
Tα0ρTT

)
, which holds by elementary calculations.

Part (b). Since

T∑
t=1

φ`

(
t

T

) T∑
j=t

ρt−1−jT uj =
T∑
j=1

(
j∑
t=1

φ`

(
t

T

)
ρt−1−jT

)
uj

=
T∑
j=1

(
j∑
t=1

φ`

(
t

T

)
ρt−1−jT

)
C(1)εj +

T∑
j=1

(
j∑
t=1

φ`

(
t

T

)
ρt−1−jT

)
(ε̃j−1 − ε̃j)

=
T∑
j=1

(
j∑
t=1

φ`

(
t

T

)
ρt−1−jT

)
C(1)εj + φ`

(
1

T

)
ρ−1T ε̃0 −

T∑
t=1

φ`

(
t

T

)
ρt−1−TT ε̃T

+

T−1∑
j=1

[(
ρ−1T − 1

) j∑
t=1

φ`

(
t

T

)
ρt−1−jT + φ`

(
j + 1

T

)
ρ−1T

]
ε̃j

=
T∑
j=1

(
j∑
t=1

φ`

(
t

T

)
ρt−1−jT

)
C(1)εj +O

T−α0

T−1∑
j=1

(
j∑
t=1

φ`

(
t

T

)
ρt−1−jT

)
ε̃j


+op

(√
TTα0ρTT

)
,

it suffices to show that

T∑
j=1

(
j∑
t=1

φ`

(
t

T

)
ρt−1−jT

)
εj = op
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as desired.�

Supplement B: Monte Carlo Simulation Evidence

As mentioned in the main text, we conduct two sets of Monte Carlo simulations. The first
set is based on i.i.d. errors while the second set is based on weakly dependent errors. The main
text has reported and discussed the simulation results for the case with α0 = 0.5 and T = 100.
In this section, we consider additional combinations of α0 and T , and provide more evidence
for the conclusions given in the main text.

Tables S.1-S.3 report the empirical size and power results of the tPM, tWY, and tMED

tests under i.i.d. errors for three explosive indices α0 = {0.3, 0.5, 0.8} and two sample sizes
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T ∈ {100, 150}. Conceptually, the three explosive indices represent the explosive behavior of
severe, moderate, and mild degrees, respectively. First, as is clear from the tables, the size
performance of the three tests based on i.i.d. Gaussian errors is qualitatively similar to that
based on i.i.d. uniform errors. For example, the empirical size of the tPM test is 5.0% in the case
wherein α0 = 0.3, T = 100, and ν = 0 under i.i.d. Gaussian errors, while the corresponding
size under i.i.d. uniform errors is 4.7%. Similarly, the tMED test has a size of 5.1% under i.i.d.
Gaussian errors and 5.3% under i.i.d. uniform errors when α0 = 0.5, T = 150, and ν = Tα0/4.
This is in line with our theoretical analysis that normality of the errors is not necessary for
these tests.

The second feature is that when ν 6= 0, both the tWY test and tMED test have quite accurate
size. Take the case with α0 = 0.5, T = 100, ν = Tα0/4, and ut ∼ i.i.d.N(0, 1) as an example.
The empirical size of the tMED test is 5.5%, whereas the corresponding size of the tWY test is
5.6%. Note that the asymptotic distribution of the tWY statistic is simulated by employing the
true parameter values. The standard normal approximation to the distribution of the tMED

statistic appears to be very accurate.
When ν = 0, as Tables S.1-S.3 show, the tPM test has satisfactory size performance for at

least the cases with α0 = 0.3 and α0 = 0.5. This is expected, as the tPM statistic is based on a
regression without a drift term. In such cases, we observe that the size performance of the tMED

test is not worse than that of the tPM test. For example, when α0 = 0.5, T = 150, and ν = 0,
the null rejection probabilities of the tPM and tMED tests are around 5% for both Gaussian and
uniform errors. We also notice that these two tests have some size distortion when α0 is large
and close to 1. This is not surprising because when α0 → 1, the ME root ρT = 1 + T−α0 will
approach a unit root, a scenario that is not accommodated by our asymptotic theory. But the
size distortion decreases as T increases or as ν departs farther away from zero. In fact, as ν
becomes larger (i.e., µT becomes larger), the tPM test suffers from increasing size distortion
while the tMED test enjoys a good size control. For example, the empirical size of the tMED test
is 5.4% when α0 = 0.8, T = 150, ν = Tα0/2, and ut ∼ i.i.d.U(−

√
3,
√

3), which is much closer
to the nominal level than that of the tPM test, which is nearly 100.0%. According to the size
accuracy, the tMED test dominates the tPM test.

Finally, the tMED test is more powerful than the tPM test in our simulation experiments. For
example, when α0 = 0.8, T = 150, ν = Tα0/4, and ut ∼ i.i.d.U(−

√
3,
√

3), the size-adjusted
power of the tPM test is 71.0% while that of the tMED test is 75.5%. As α0 decreases, the
local-to-unity alternative departs more from the null of moderate explosiveness, and the power
of the tests approaches 100%. This explains why the tPM and tMED tests always reject when
α0 = 0.3 and 0.5. Our simulation evidence clearly shows that the tMED test outperforms the
tPM test in terms of both size accuracy and and power performance.

Tables S.4-S.6 report the empirical size and power results of the tMED and t̃MED tests under
both the AR design and the MA design. The results for the sample size T = 100 are similar
to those for T = 150. In view of the size accuracy, the tMED test performs well when θ = 0, as
there is no autocorrelation. However, this test has large size distortion when θ is different from
0. The size distortion increases significantly as θ becomes larger. In contrast, the size distortion
of the t̃MED test is substantially smaller than that of the standard tMED test. For example, in
the case wherein α0 = 0.3, T = 150, and θ = 0.75, the size results of t̃MED are 4.0% under the
AR design and 5.9% under the MA design, respectively, both of which are quite smaller than
36.3% and 15.4%, the corresponding size levels of tMED. Other parameter configurations also
lead to the observation that the t̃MED test is more accurate and is therefore preferred when the
errors are serially correlated. This result is consistent with our asymptotic theory. Ignoring
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Table S.1: Size and power under i.i.d. errors with α0 = 0.3.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tPM tWY tMED tPM tMED

T = 100 (a) i.i.d. Gaussian errors
ν = 0 0.050 0.056 0.055 1.000 1.000
ν = 2 0.603 0.058 0.055 1.000 1.000

ν = Tα0/4 0.397 0.060 0.055 1.000 1.000

ν = Tα0/2 0.601 0.058 0.055 1.000 1.000
(b) i.i.d. uniform errors

ν = 0 0.047 0.049 0.046 1.000 1.000
ν = 2 0.598 0.048 0.046 1.000 1.000

ν = Tα0/4 0.393 0.048 0.046 1.000 1.000

ν = Tα0/2 0.596 0.048 0.046 1.000 1.000
T = 150 (a) i.i.d. Gaussian errors

ν = 0 0.050 0.052 0.051 1.000 1.000
ν = 2 0.626 0.057 0.051 1.000 1.000

ν = Tα0/4 0.428 0.053 0.051 1.000 1.000

ν = Tα0/2 0.663 0.057 0.052 1.000 1.000
(b) i.i.d. uniform errors

ν = 0 0.051 0.061 0.054 1.000 1.000
ν = 2 0.618 0.055 0.053 1.000 1.000

ν = Tα0/4 0.420 0.058 0.054 1.000 1.000

ν = Tα0/2 0.652 0.055 0.053 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. Different parameter combinations are configured to conduct simulations for the null of moderate explo-

siveness ρ = 1 + 1/Tα0 against the alternative of local-to-unity ρ = 1 + 1/T .
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Table S.2: Size and power under i.i.d. errors with α0 = 0.5.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tPM tWY tMED tPM tMED

T = 100 (a) i.i.d. Gaussian errors
ν = 0 0.050 0.053 0.056 1.000 1.000
ν = 2 0.733 0.056 0.055 1.000 1.000

ν = Tα0/4 0.641 0.056 0.055 1.000 1.000

ν = Tα0/2 0.969 0.058 0.055 1.000 1.000
(b) i.i.d. uniform errors

ν = 0 0.049 0.047 0.049 1.000 1.000
ν = 2 0.733 0.047 0.048 1.000 1.000

ν = Tα0/4 0.637 0.047 0.048 1.000 1.000

ν = Tα0/2 0.973 0.047 0.048 1.000 1.000
T = 150 (a) i.i.d. Gaussian errors

ν = 0 0.050 0.056 0.051 1.000 1.000
ν = 2 0.740 0.054 0.051 1.000 1.000

ν = Tα0/4 0.689 0.053 0.051 1.000 1.000

ν = Tα0/2 0.992 0.053 0.051 1.000 1.000
(b) i.i.d. uniform errors

ν = 0 0.051 0.053 0.053 1.000 1.000
ν = 2 0.731 0.053 0.053 1.000 1.000

ν = Tα0/4 0.678 0.053 0.053 1.000 1.000

ν = Tα0/2 0.991 0.053 0.053 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. Different parameter combinations are configured to conduct simulations for the null of moderate explo-

siveness ρ = 1 + 1/Tα0 against the alternative of local-to-unity ρ = 1 + 1/T .
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Table S.3: Size and power under i.i.d. errors with α0 = 0.8.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tPM tWY tMED tPM tMED

T = 100 (a) i.i.d. Gaussian errors
ν = 0 0.118 0.256 0.261 0.133 0.142
ν = 2 0.576 0.049 0.050 0.320 0.391

ν = Tα0/4 0.795 0.048 0.048 0.407 0.553

ν = Tα0/2 1.000 0.052 0.051 0.978 0.999
(b) i.i.d. uniform errors

ν = 0 0.113 0.241 0.257 0.136 0.142
ν = 2 0.591 0.045 0.048 0.289 0.364

ν = Tα0/4 0.807 0.044 0.047 0.399 0.527

ν = Tα0/2 1.000 0.048 0.053 0.982 1.000
T = 150 (a) i.i.d. Gaussian errors

ν = 0 0.118 0.240 0.246 0.207 0.192
ν = 2 0.615 0.052 0.054 0.498 0.524

ν = Tα0/4 0.883 0.051 0.054 0.695 0.741

ν = Tα0/2 1.000 0.051 0.055 1.000 1.000
(b) i.i.d. uniform errors

ν = 0 0.118 0.235 0.235 0.200 0.196
ν = 2 0.610 0.055 0.055 0.515 0.553

ν = Tα0/4 0.880 0.052 0.054 0.710 0.755

ν = Tα0/2 1.000 0.053 0.054 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. Different parameter combinations are configured to conduct simulations for the null of moderate explo-

siveness ρ = 1 + 1/Tα0 against the alternative of local-to-unity ρ = 1 + 1/T .
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Table S.4: Size and power in the presence of autocorrelated errors: the case with α0 = 0.3.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tMED t̃MED tMED t̃MED

T = 100 (a) AR design
θ = 0.00 0.056 0.059 1.000 1.000
θ = 0.25 0.123 0.061 1.000 1.000
θ = 0.50 0.221 0.054 1.000 1.000
θ = 0.75 0.356 0.045 1.000 1.000

(b) MA design
θ = 0.00 0.055 0.059 1.000 1.000
θ = 0.25 0.108 0.056 1.000 1.000
θ = 0.50 0.143 0.058 1.000 1.000
θ = 0.75 0.155 0.056 1.000 1.000

T = 150 (a) AR design
θ = 0.00 0.052 0.055 1.000 1.000
θ = 0.25 0.119 0.056 1.000 1.000
θ = 0.50 0.215 0.053 1.000 1.000
θ = 0.75 0.363 0.040 1.000 1.000

(b) MA design
θ = 0.00 0.051 0.056 1.000 1.000
θ = 0.25 0.103 0.055 1.000 1.000
θ = 0.50 0.144 0.055 1.000 1.000
θ = 0.75 0.154 0.059 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. In the AR design, ut = θut−1 +
√

1− θ2e1,t, while in the MA design, ut = θe2,t−1 +
√

1− θ2e2,t,
where e1,t ∼ i.i.d.N(0, 1) and e2,t ∼ i.i.d.N(0, 1). Different parameter combinations are configured to con-

duct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα0 against the alternative of local-to-unity

ρ = 1 + 1/T .

the autocorrelation leads to an inaccurate test.
On the other hand, as can be seen from Tables S.4-S.6, the size-adjusted power of the t̃MED

test is close to that of the tMED test, in both the AR and MA cases. Take the case with
α0 = 0.5, T = 100, and θ = 0.75 as an example. The t̃MED test has a power of 97.1% under the
AR design, whereas the corresponding power of the tMED test is 99.3%. Under the MA design,
the power level of both the t̃MED and tMED tests reaches 100%. Given these observations, we
can conclude that the t̃MED test achieves a satisfactory size-adjusted power performance with
only relatively small size distortion.
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Table S.5: Size and power in the presence of autocorrelated errors: the case with α0 = 0.5.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tMED t̃MED tMED t̃MED

T = 100 (a) AR design
θ = 0.00 0.053 0.057 1.000 1.000
θ = 0.25 0.134 0.068 1.000 1.000
θ = 0.50 0.242 0.070 1.000 0.998
θ = 0.75 0.413 0.081 0.993 0.971

(b) MA design
θ = 0.00 0.055 0.060 1.000 1.000
θ = 0.25 0.114 0.060 1.000 1.000
θ = 0.50 0.157 0.066 1.000 1.000
θ = 0.75 0.169 0.066 1.000 1.000

T = 150 (a) AR design
θ = 0.00 0.052 0.053 1.000 1.000
θ = 0.25 0.127 0.064 1.000 1.000
θ = 0.50 0.243 0.064 1.000 0.999
θ = 0.75 0.430 0.074 0.998 0.996

(b) MA design
θ = 0.00 0.051 0.055 1.000 1.000
θ = 0.25 0.111 0.061 1.000 1.000
θ = 0.50 0.155 0.063 1.000 1.000
θ = 0.75 0.169 0.062 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. In the AR design, ut = θut−1 +
√

1− θ2e1,t, while in the MA design, ut = θe2,t−1 +
√

1− θ2e2,t,
where e1,t ∼ i.i.d.N(0, 1) and e2,t ∼ i.i.d.N(0, 1). Different parameter combinations are configured to con-

duct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα0 against the alternative of local-to-unity

ρ = 1 + 1/T .
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Table S.6: Size and power in the presence of autocorrelated errors: the case with α0 = 0.8.

Size (ρ = 1 + 1/Tα0) Power (ρ = 1 + 1/T )
tMED t̃MED tMED t̃MED

T = 100 (a) AR design
θ = 0.00 0.049 0.051 0.556 0.545
θ = 0.25 0.121 0.061 0.525 0.468
θ = 0.50 0.250 0.077 0.398 0.346
θ = 0.75 0.459 0.111 0.272 0.195

(b) MA design
θ = 0.00 0.048 0.051 0.552 0.550
θ = 0.25 0.099 0.056 0.531 0.488
θ = 0.50 0.144 0.065 0.489 0.427
θ = 0.75 0.157 0.065 0.483 0.404

T = 150 (a) AR design
θ = 0.00 0.055 0.057 0.763 0.748
θ = 0.25 0.126 0.069 0.666 0.631
θ = 0.50 0.252 0.074 0.512 0.461
θ = 0.75 0.465 0.103 0.330 0.266

(b) MA design
θ = 0.00 0.054 0.055 0.740 0.733
θ = 0.25 0.106 0.062 0.688 0.656
θ = 0.50 0.150 0.066 0.630 0.577
θ = 0.75 0.163 0.066 0.615 0.561

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo repli-

cations. In the AR design, ut = θut−1 +
√

1− θ2e1,t, while in the MA design, ut = θe2,t−1 +
√

1− θ2e2,t,
where e1,t ∼ i.i.d.N(0, 1) and e2,t ∼ i.i.d.N(0, 1). Different parameter combinations are configured to con-

duct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα0 against the alternative of local-to-unity

ρ = 1 + 1/T .
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