Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Application of flow sensitive gradients for improved measures of metabolism using hyperpolarized (13) c MRI.

Published Web Location

https://doi.org/10.1002/mrm.25584
Abstract

PURPOSE: To develop the use of bipolar gradients to suppress partial-volume and flow-related artifacts from macrovascular, hyperpolarized spins. THEORY AND METHODS: Digital simulations were performed over a range of spatial resolutions and gradient strengths to determine the optimal bipolar gradient strength and duration to suppress flowing spins while minimizing signal loss from static tissue. In vivo experiments were performed to determine the efficacy of this technique to suppress vascular signal in the study of hyperpolarized [1-(13)C]pyruvate renal metabolism. RESULTS: Digital simulations showed that in the absence of bipolar gradients, partial-volume artifacts from the vasculature were still present, causing underestimation of the apparent reaction rate of pyruvate to lactate (kP). The addition of a bipolar gradient with b = 32 s/mm(2) sufficiently suppressed the vascular signal without a substantial decrease in signal from static tissue. In vivo results corroborate digital simulations, with similar peak lactate signal to noise ratio (SNR) but substantially different kP in the presence of bipolar gradients. CONCLUSION: The proposed approach suppresses signal from flowing spins while minimizing signal loss from static tissue, removing contaminating signal from the vasculature and increasing kinetic modeling accuracy without substantially sacrificing SNR or temporal resolution.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View