Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A bistable autoregulatory module in the developing embryo commits cells to binary expression fates.

Abstract

Bistable autoactivation has been proposed as a mechanism for cells to adopt binary fates during embryonic development. However, it is unclear whether the autoactivating modules found within developmental gene regulatory networks are bistable, unless their parameters are quantitatively determined. Here, we combine in vivo live imaging with mathematical modeling to dissect the binary cell fate dynamics of the fruit fly pair-rule gene fushi tarazu (ftz), which is regulated by two known enhancers: the early (non-autoregulating) element and the autoregulatory element. Live imaging of transcription and protein concentration in the blastoderm revealed that binary Ftz fates are achieved as Ftz expression rapidly transitions from being dictated by the early element to the autoregulatory element. Moreover, we discovered that Ftz concentration alone is insufficient to activate the autoregulatory element, and that this element only becomes responsive to Ftz at a prescribed developmental time. Based on these observations, we developed a dynamical systems model and quantitated its kinetic parameters directly from experimental measurements. Our model demonstrated that the ftz autoregulatory module is indeed bistable and that the early element transiently establishes the content of the binary cell fate decision to which the autoregulatory module then commits. Further in silico analysis revealed that the autoregulatory element locks the Ftz fate quickly, within 35 min of exposure to the transient signal of the early element. Overall, our work confirms the widely held hypothesis that autoregulation can establish developmental fates through bistability and, most importantly, provides a framework for the quantitative dissection of cellular decision-making.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View