Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

3D Crumpled Ultrathin 1T MoS2 for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors.

  • Author(s): Shao, Yuanlong
  • Fu, Jui-Han
  • Cao, Zhen
  • Song, Kepeng
  • Sun, Ruofan
  • Wan, Yi
  • Shamim, Atif
  • Cavallo, Luigi
  • Han, Yu
  • Kaner, Richard B
  • Tung, Vincent C
  • et al.
Abstract

Metallic molybdenum disulfide (MoS2), e.g., 1T phase, is touted as a highly promising material for energy storage that already displays a great capacitive performance. However, due to its tendency to aggregate and restack, it remains a formidable challenge to assemble a high-performance electrode without scrambling the intrinsic structure. Here, we report an electrohydrodynamic-assisted fabrication of 3D crumpled MoS2 (c-MoS2) and its formation of an additive-free stable ink for scalable inkjet printing. The 3D c-MoS2 powders exhibited a high concentration of metallic 1T phase and an ultrathin structure. The aggregation-resistant properties of the 3D crumpled particles endow the electrodes with open space for electrolyte ion transport. Importantly, we experimentally discovered and theoretically validated that 3D 1T c-MoS2 enables an extended electrochemical stable working potential range and enhanced capacitive performance in a bivalent magnesium-ion aqueous electrolyte. With reduced graphene oxide (rGO) as the positive electrode material, we inkjet-printed 96 rigid asymmetric micro-supercapacitors (AMSCs) on a 4-in. Si/SiO2 wafer and 100 flexible AMSCs on photo paper. These AMSCs exhibited a wide stable working voltage of 1.75 V and excellent capacitance retention of 96% over 20 000 cycles for a single device. Our work highlights the promise of 3D layered materials as well-dispersed functional materials for large-scale printed flexible energy storage devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View