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s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
s.connect((FILENAME))
p = select.poll()
p.register(s.fileno(), select.POLLIN | select.POLLHUP)
while 1:
     results = p.poll(1)
          if len(results):

          if (results[0][1] == select.POLLIN):
                    data = s.recv(8)
                    if not len(data):
                         print("\rRemote end closing connection; exiting.")
                         break
                    print "Received: " , data
              elif (results[0][1] == select.POLLHUP):
                     print "Server hanged up; exiting."
                     sys.exit(0)
           else:
                     print "Problem occured; exiting."
                     sys.exit(0)
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  Introduction:Introduction:  EmStar EmStar facilitates WSN software development for 32-bit platformfacilitates WSN software development for 32-bit platform
Role of EmStar in WSN

• A development platform for 32-bit class of embedded devices
– EmStar provides a programming development environment for building

robust WSN systems for 32-bit class of embedded devices

• A library of services commonly found in WSN systems
– EmStar provides a library of commonly found services in WSN, such as

localization, time synchronization, reliable broadcast, etc.
• Tools to provide visibility in large-scale networks of embedded

devices
– EmStar provides monitoring tools to read and change status of process in

networked environment via emproxy and echocat
• A seamless transition between development, simulation,

emulation, and deployment
– EmStar provides necessary compilation architecture and tools to enable use

of the same code across various stages from development to deployment

Unhandled issues in the current generation of EmStar
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• Increasingly involved role for 32-bit platforms in WSN
unearthed new issues
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• Multiple operating systems for 32-bit platforms
– All though, Linux is the most widely used operating system, Windows is

used by certain devices such as smartphones
• Incorrect memory access resulting in run-time failure

– Given the scarcity of memory, lack of garbage collection increases the
chances run-time crash

• Issues with multiple processes
– It is complex to write processes, which can deal with restart of other

processes; e.g. dealing with restarted time-sync process
– For large-scale deployment, multiple processes in each node makes system

management complex
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• Python as a programming language

Python

Perl

Java


(Work in progress)

C#
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• Unix domain sockets (UDS) to provide visibility into the
system and control over the system

– UDS appear as files in file-system of node
– UDS are portable across Linux and Windows
– A process can expose its state via UDS

Process /link: link quality

/neighbors: list of neighbors

/data: % of data received

– A process can receive commands over UDS

Process

/switch: start or stop

/flood: start a new flood

/root: become a root of a tree

• Asynchronous (non-blocking) process communication
– A single thread of execution can communicate with multiple processes, e.g.

visibility and control tools
– No issues related to locking, deadlock, or synchronization found in multi-

threaded system
– Use of GLIB tools for generating and handling events

• Use of exception-handling to reduce run-time crashes
– In case of erroneous condition, program catches the error gracefully rather

than crashing
– A traceback of function calls is provided to user facilitate debugging

• Ability to use devices generated by existing EmStar code
– EmStar-2 code can use all the device files generated by existing EmStar

code, hence leveraging on large code-base of existing tools and utilities

– Recently, 32-bit platforms
are themselves uses as sensor
nodes, e.g. MASE
deployment in Mexico for
seismic sensing

– Traditionally, 32-bit platforms
serve as micro-server or master
in large-scale mote networks




