
UCLA
Posters

Title
EmStar-2: The Next Generation Programming Development Environment for 32-bit Class of 
Embedded Devices (SYS 9)

Permalink
https://escholarship.org/uc/item/2kf8m371

Authors
Vinayak Naik
Lewis Girod
Martin Lukac
et al.

Publication Date
2006

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kf8m371
https://escholarship.org/uc/item/2kf8m371#author
https://escholarship.org
http://www.cdlib.org/


s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
s.connect((FILENAME))
p = select.poll()
p.register(s.fileno(), select.POLLIN | select.POLLHUP)
while 1:
     results = p.poll(1)
          if len(results):

          if (results[0][1] == select.POLLIN):
                    data = s.recv(8)
                    if not len(data):
                         print("\rRemote end closing connection; exiting.")
                         break
                    print "Received: " , data
              elif (results[0][1] == select.POLLHUP):
                     print "Server hanged up; exiting."
                     sys.exit(0)
           else:
                     print "Problem occured; exiting."
                     sys.exit(0)

  Problem Description:Problem Description:  Simplify software development and large-scale deploymentSimplify software development and large-scale deployment

  Proposed Solution:Proposed Solution:  New design principles forNew design principles for  EmStar-2EmStar-2

EmStar-2: The Next Generation of Programming DevelopmentEmStar-2: The Next Generation of Programming Development
Environment for 32-bitEnvironment for 32-bit  Class of Embedded DevicesClass of Embedded Devices

Vinayak Naik1, Lewis Girod2, Martin Lukac1, Nithya Ramanathan1, Ben Greenstein1, Eddie Kohler1, and Deborah Estrin1

1CENS–UCLA and 2CSAIL–MIT
http://research.cens.ucla.edu

  Introduction:Introduction:  EmStar EmStar facilitates WSN software development for 32-bit platformfacilitates WSN software development for 32-bit platform
Role of EmStar in WSN

• A development platform for 32-bit class of embedded devices
– EmStar provides a programming development environment for building

robust WSN systems for 32-bit class of embedded devices

• A library of services commonly found in WSN systems
– EmStar provides a library of commonly found services in WSN, such as

localization, time synchronization, reliable broadcast, etc.
• Tools to provide visibility in large-scale networks of embedded

devices
– EmStar provides monitoring tools to read and change status of process in

networked environment via emproxy and echocat
• A seamless transition between development, simulation,

emulation, and deployment
– EmStar provides necessary compilation architecture and tools to enable use

of the same code across various stages from development to deployment

Unhandled issues in the current generation of EmStar

UCLA UCLA –– UCR  UCR –– Caltech  Caltech –– USC  USC –– CSU  CSU –– JPL  JPL –– UC Merced UC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

Stargate AENSbox Nokia smartphone

• Increasingly involved role for 32-bit platforms in WSN
unearthed new issues

Stargates 
 

 

PC

Motes

• Multiple operating systems for 32-bit platforms
– All though, Linux is the most widely used operating system, Windows is

used by certain devices such as smartphones
• Incorrect memory access resulting in run-time failure

– Given the scarcity of memory, lack of garbage collection increases the
chances run-time crash

• Issues with multiple processes
– It is complex to write processes, which can deal with restart of other

processes; e.g. dealing with restarted time-sync process
– For large-scale deployment, multiple processes in each node makes system

management complex

Stargate-based
sensor node
for seismic
sensing

• Python as a programming language

Python

Perl

Java


(Work in progress)

C#

 C

Code
readability

Handling of
C structures

Portability
across OS

Garbage
collection

• Unix domain sockets (UDS) to provide visibility into the
system and control over the system

– UDS appear as files in file-system of node
– UDS are portable across Linux and Windows
– A process can expose its state via UDS

Process /link: link quality

/neighbors: list of neighbors

/data: % of data received

– A process can receive commands over UDS

Process

/switch: start or stop

/flood: start a new flood

/root: become a root of a tree

• Asynchronous (non-blocking) process communication
– A single thread of execution can communicate with multiple processes, e.g.

visibility and control tools
– No issues related to locking, deadlock, or synchronization found in multi-

threaded system
– Use of GLIB tools for generating and handling events

• Use of exception-handling to reduce run-time crashes
– In case of erroneous condition, program catches the error gracefully rather

than crashing
– A traceback of function calls is provided to user facilitate debugging

• Ability to use devices generated by existing EmStar code
– EmStar-2 code can use all the device files generated by existing EmStar

code, hence leveraging on large code-base of existing tools and utilities

– Recently, 32-bit platforms
are themselves uses as sensor
nodes, e.g. MASE
deployment in Mexico for
seismic sensing

– Traditionally, 32-bit platforms
serve as micro-server or master
in large-scale mote networks




