Skip to main content
Download PDF
- Main
Kinetic analysis of multi‐resolution hyperpolarized 13C human brain MRI to study cerebral metabolism
Published Web Location
https://doi.org/10.1002/mrm.29354Abstract
Purpose
To investigate multi-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring kinetic conversion rates in the human brain.Methods
HP [1-13 C]pyruvate MRI was acquired in 6 subjects with a multi-resolution EPI sequence at 7.5 × 7.5 mm2 resolution for pyruvate and 15 × 15 mm2 resolution for lactate and bicarbonate. With the same lactate data, 2 quantitative maps of pyruvate-to-lactate conversion (kPL ) maps were generated: 1 using 7.5 × 7.5 mm2 resolution pyruvate data and the other using synthetic 15 × 15 mm2 resolution pyruvate data to simulate a standard constant resolution acquisition. To examine local kPL values, 4 voxels were manually selected in each study representing brain tissue near arteries, brain tissue near veins, white matter, and gray matter.Results
High resolution 7.5 × 7.5 mm2 pyruvate images increased the spatial delineation of brain structures and decreased partial volume effects compared to coarser resolution 15 × 15 mm2 pyruvate images. Voxels near arteries, veins and in white matter exhibited higher calculated kPL for multi-resolution images.Conclusion
Acquiring HP 13 C pyruvate metabolic data with a multi-resolution approach minimized partial volume effects from vascular pyruvate signals while maintaining the SNR of downstream metabolites. Higher resolution pyruvate images for kinetic fitting resulted in increased kinetic rate values, particularly around the superior sagittal sinus and cerebral arteries, by reducing extracellular pyruvate signal contributions from adjacent blood vessels. This HP 13 C study showed that acquiring pyruvate with finer resolution improved the quantification of kinetic rates throughout the human brain.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%