Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Distinct HLA associations of LGI1 and CASPR2-antibody diseases

Abstract

The recent biochemical distinction between antibodies against leucine-rich, glioma-inactivated-1 (LGI1), contactin-associated protein-2 (CASPR2) and intracellular epitopes of voltage-gated potassium-channels (VGKCs) demands aetiological explanations. Given established associations between human leucocyte antigen (HLA) alleles and adverse drug reactions, and our clinical observation of frequent adverse drugs reactions in patients with LGI1 antibodies, we compared HLA alleles between healthy controls (n = 5553) and 111 Caucasian patients with VGKC-complex autoantibodies. In patients with LGI1 antibodies (n = 68), HLA-DRB1*07:01 was strongly represented [odds ratio = 27.6 (95% confidence interval 12.9-72.2), P = 4.1 × 10-26]. In contrast, patients with CASPR2 antibodies (n = 31) showed over-representation of HLA-DRB1*11:01 [odds ratio = 9.4 (95% confidence interval 4.6-19.3), P = 5.7 × 10-6]. Other allelic associations for patients with LGI1 antibodies reflected linkage, and significant haplotypic associations included HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02, by comparison to DRB1*11:01-DQA1*05:01-DQB1*03:01 in CASPR2-antibody patients. Conditional analysis in LGI1-antibody patients resolved further independent class I and II associations. By comparison, patients with both LGI1 and CASPR2 antibodies (n = 3) carried yet another complement of HLA variants, and patients with intracellular VGKC antibodies (n = 9) lacked significant HLA associations. Within LGI1- or CASPR2-antibody patients, HLA associations did not correlate with clinical features. In silico predictions identified unique CASPR2- and LGI1-derived peptides potentially presented by the respective over-represented HLA molecules. These highly significant HLA associations dichotomize the underlying immunology in patients with LGI1 or CASPR2 antibodies, and inform T cell specificities and cellular interactions at disease initiation.10.1093/brain/awy109_video1awy109media15796480660001.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View